OBJECTIVES

Understand seasonal- to- interannual changes of the Pacific Ocean

APPROACH

Assimilate altimetry and in situ data with models.

MODEL

MITgcm, global domain, high resolution $(\Delta z=10m, \Delta y=1/3^\circ)$, with advanced mixing schemes (GM & KPP).

ASSIMILATION METHOD

Kalman Filter/Smoother & Adjoint Method

INTERIM PROGRESS

- Model uncertainty assessment
- Kalman filter derivation
- Adjoint model development

ANTICIPATED RESULTS

"Rigorous" routine (weekly) analysis of global ocean circulation.

TEMPERATURE SECTIONS Model is sensitive to mixing parameters (LEFT). Note superior similarity of model thermocline to WOCE section than that of climatology (RIGHT).

SEA LEVEL VARIABILITY Model is well correlated with T/P, accounting for a significant fraction of the observed variability.

CURRENTS Model is fairly accurate in magnitude and phase of the currents (LEFT). Model mean is sensitive to friction (RIGHT).

SEASONAL-TO-INTERANNUAL OCEAN VARIABILITIES: COMBINING ALTIMETRY AND MODELS

I.Fukumori, R.Giering, T.Lee, D.Menemenlis, and L.-L.Fu

JPL

PASSAGES and PATHWAYS Model hydrography is dependent on accurate representation of straits and passages (LEFT). Pathways of subducted water masses critically depend on variabilities of the circulation (RIGHT).

KALMAN FILTER DESIGN Model and data are analyzed so as to design an effective Kalman filter. Dynamic modes are used to resolve dominant adiabatic variability.

Particle trajectories for 1985–1997 modeled velocity fiel

SUMMARY

Model uncertainties (forcing, parameters, topography) are carefully assessed to effect an accurate assimilation.

The model mean appears to be as dependent on parameters and topography (including accurate representation of straits and passageways) as it is on atmospheric forcing.

A Kalman Filter/Smoother and Model Adjoint are being constructed to optimize the identified model deficiencies and to synthesize the diverse observations.

Sensitivity to surface T (t-10days) [Sv/degC]

0.e+005.e-06 -5.e-06

SENSITIVITY ESTIMATE BY MODEL ADJOINT The model adjoint is used to estimate sensitivity of the circulation (Indonesian Throughflow) to changes in the model state (surface temperature).