

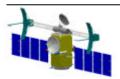
JASON2 / OSTM Project Overview :

CNES STATUS

J. Perbos

Main evolutions from Jason-1 to Jason-2/OSTM (1)

At programmatic level

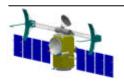

4 agencies cooperation program : NASA/CNES/NOAA/EUMETSAT

At system level

- Revised sharing of responsibility
 - Routine satellite operations under NOAA responsibility
 - EUMETSAT/NOAA responsibility in routine OSDR processing and distribution

At satellite bus level

- PROTEUS platform evolutions
 - PROTEUS flight domain increased after Jason1 to support future missions (CALIPSO, COROT, SMOS)
 - larger masses and inertia
 - antennas deployment in Safe-Hold mode
 - equipment change or improvements (Star Tracker, MTB,...)
 - WSOA experiment will benefit from these improvements



Main evolutions from Jason-1 to Jason-2/OSTM (2) CNES Payload:

Altimeter

- Evolutions :
 - Components obsolescence : Change of µprocessor (DSP 21020)
 - Heritage from SIRAL (CRYOSAT instrument)
- New functional mode using DORIS on board navigation :
 - measurement location and height above the reference geoid provided in real time to the altimeter by Doris; directly used by the altimeter to position the signal reception window and get the radar echo
 - ⇒ signal acquisition phase and on-board tracking loop suppressed
 - measurements over any desired target (ocean, coastal zones, inland waters, ice,...)
 - no more data loss due to acquisition phase
 - optional mode : experimental on-board Jason-2

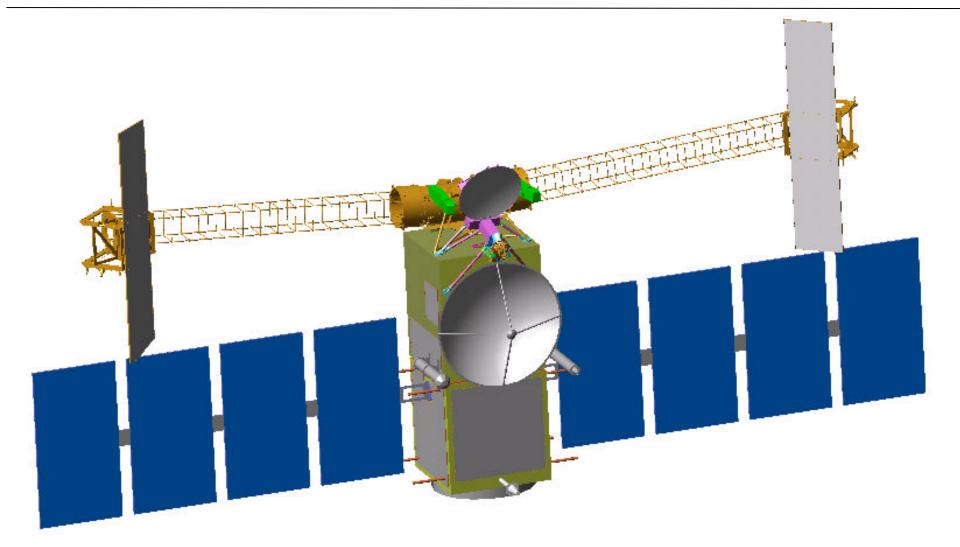
Main evolutions from Jason-1 to Jason-2/OSTM (3) CNES Payload:

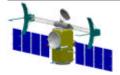
Doris

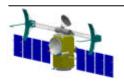
- Derived from Doris/CRYOSAT
 - Change of µprocessor (SPARC ERC 23 single chip)
- Several improvements :
 - one fully redunded electronic box
 - 8 bi-frequency channels receiver
 - software can be fully reloaded without any mission interruption
 - platform attitude provided in real time to Doris and used by Diode (on-board Doris navigator); also downloaded by Doris in the science telemetry flow
 - plan to include a dosimeter in the electronic box, to measure the total radiation dose received by Doris

NASA Payload : see Said Kaki presentation

• AMR, GPSP, LRA, WSOA







Jason2 / OSTM Status (1)

- Platform under procurement, funded through Proteus multi satellite contract with Alcatel Space
- Doris Phase B development started beginning of November 2003
- Satellite and Altimeter development contract under negotiation with Alcatel Space
- CNES Jason2 Program Proposal in preparation
 - will be presented at CNES Board of Governors after completion of the satellite and altimeter contract negotiation (objective : beginning of 2004)
- Tentative launch date: first semester of 2008

Jason2 / OSTM Status (2)

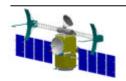
Satellite

- WSOA accommodation on the satellite:
 - First accommodation study performed in 2002 with mass/inertia characteristics leading to satellite budgets out of the Proteus capability.
 - Since beginning of 2003: iterations on the WSOA configuration, antennas locations, etc... in order to improve the mass/inertia/center of gravity criteria
 - Mechanical study ongoing to assess the WSOA/satellite compatibility
 - Mass, inertia : OK
 - CoG still out of Proteus specification, but not critical
 - Quasi-static loads analysis: first results OK, to be analyzed in detail
 - Detailed impact of the solar panels shadowing by the WSOA antennas and mast under evaluation
 - No critical impact on power budget resources identified

Jason2 / OSTM Status (3)

Products

- Jason1 products
 - OSDR: content = 2 hour data span, delay = 3 hours
 - IGDR: content = 1 day data span, delay = 3 working days, SSH accuracy = 4 cm rss (requirement = 5.2 cm, including 4 cm for the orbit)
 - GDR: content = 10 day data span, delay ~ 1 month, SSH accuracy = 3.3 cm rss (requirement = 4.2 cm, including 2.5 cm for the orbit)
- Jason2/OSTM Products baseline
 - at least same performance as for Jason1 for all the elements of the error budget (to be confirmed for the orbit performance)
- New objectives:
 - on going survey for near real time products needs (users = JPL, NAVY, Met Office, SWT..)
 - content, orbit performance, delay
 - continental waters : product to be defined (IGDR + waveforms)
 - experimental products :
 - WSOA products
 - coastal zones products
 - DUACS: multi mission products including Jason2 (will be used for WSOA validation)



Jason1 status

- Jason1 entered in safehold mode on Wednesday morning, Nov 19
- Caused by abnormal behaviour of a reaction wheel which stopped
- Satellite expert analysis showed no other abnormal telemetry
- A test was run yesterday to check this reaction wheel: Result OK
- First part of recovery procedure has been performed
- Return to nominal operation planned beginning of next week
- No satellite lifetime impact expected

