Mean Sea Level Monitoring in the 1990s: Observations and Causes

A. Cazenave and R. S. Nerem

Jason-1/TOPEX/Poseidon Science Working Team Meeting Arles, France November18-21, 2003

2000

2002

1998

1996

10

1994

2004

Questions to be Addressed

- What have we learned from a decade of precision altimetry?
- How well are the instruments calibrated?
- Can we see climate variations in the altimeter record?
- What does the tide gauge record tell us?
- Has there been a recent acceleration in sea level rise?
- What evidence is there to differentiate contributions to sea level rise?

Altimeter Data Processing

• TOPEX "Classic"

- MGDRs with GCP-C
- TMR drift
- GCP-C yaw correction
- GOT99b tides
- Chambers SSB
- 1.4 mm A/B bias
- TOPEX Tandem
 - Same as TOPEX, but uses its own along-track mean (adjusted to Jason)
- Jason
 - GDRs
 - 154 mm bias with respect to TOPEX
 - Experiments with different orbits, SSB corrections

Jason vs T/P MSL: Calibration Phase

Jason vs T/P MSL: Tandem Phase

Global Mean Sea Level from T/P

GMSL Variations from T/P and Jason-1

Tide Gauge Calibration Sites

TOPEX Tide Gauge Calibration

TOPEX-B Calibration

Chambers et al., New TOPEX Sea State Bias Models and Their Effect on Global Mean Sea Level, J. Geophys. Res., 108 (C10), 3305, 10.1029/2003JC001839, 2003

Jason Tide Gauge Calibration

Sea Level Rise Versus Latitude

Percent Contribution to Global Trend

Sea Level Trends: 1993-2003

EOF Modes 1 and 3

EOF Modes 2 and 4

GMSL Variations from T/P and Jason-1

Detrended PDO vs MSL

Global EKE Variations from TOPEX

Sea Level Rise Estimates Over Time

The Detection Problem

- <u>*Question:*</u> How long of an altimetric GMSL series do we need to have good confidence that the sea level rise we are observing is related to climate variations?
- Tests using different proxies for sea level variability (SOI, SST, PDO, tide gauge sea level reconstructions) all suggest about a decade of averaging is needed to have confidence in the rate at the 0.5 mm/year level.
- Tests using AOGCMs reach similar conclusions [*Lowe & Gregory*, 2003].
- Answer: We are close, but.....
- <u>Next Question:</u> If we have confidence in the altimetric rate, does it represent a recent acceleration relative to historical sea level rise estimates?

Tide Gauge Sea Level Reconstruction

#TPcyc

Detrended Mean SST vs MSL

cries.

Detrended SOI vs MSL

