Mesoscale

Future directions for systems and applications

Yearly kinetic energy maps

Mesoscale

Future potential systems and applications

Boebel, O. and C. Barron, 2003.

Observing Mesoscale

Mesoscale Agulhas ring position observations.

10 320 330 340° 350 20 -25" -25 1993 -30 30 -35' Agulhas rings originating in 1993 -25 -25 1994 -30" -30 35' 35 Agulhas rings originating in 1994 -25-25 -30' -30 1995 -35 -40° Agulhas rings originating in 1995 -25" -25' 1996 -30' -30 -35 Agulhas rings originating in 1996 3501 20 320 330 340" 0 10

Schouten et al., JGR 2000.

Decay rate over time (following each individual eddy).

Ring energy from theory is proposed to decrease rapidly during first 5 months due to Rossby wave radiation (Beismann et al., 1999), and then stabilize afterward. Observations confirm this theory.

Schouten et al., JGR 2000.

Mesoscale Evolution

Eddy splitting over Vema Seamount.

Schouten et al., JGR 2000.

Mesoscale Observations

10

Mesoscale Observations

Potential temperature (°C)

Based on observed T&S profiles and geostrophic velocity, heat and salinity fluxes are estimated.

McDonaugh, et al., JGR 1999.

Mesoscale Observations

Observed propagation speeds of Rings 1 and 2: 2.8 and 6.5 cm/s

Theoretical self-induced speeds due to β effect:

	Nof[1981]		Cushman-Roisin et al. [1990]	
	$1/_{3}\beta R_{D}^{2}$	$^{2}/_{3}\beta R_{D}^{2}$	$\beta g'(h_{\infty}+dh)/2f^2$	$\beta g' h_{\infty}/f^2$
ting 1	0.4	0.7		0.8
Ring 2	0.4	0.9	1.4	1.5

Table 3. Limits of Westward Velocities Induced by the β Effect for Rings 1 and 2

Velocities are in centimeters per second. R_D is radius of deformation, g' is acceleration of gravity; h_{ω} is depth of the 10°C isotherm outside of the ring; and f is the Coriolis parameter.

Therefore advection is a significant effect on eddy propagation.

McDonaugh, et al., JGR 1999.

Future potential systems and applications

Purpose for Ocean Assimilation

• Non-deterministic features require continuous observation. Predictive time scales are order of 1-2 weeks for atmosphere and 15-30 days for ocean.

- Mesoscale eddies
- El Nino
- Correction of forcing fields
 - Wind-driven circulation
 - Wind-driven wave field
 - Heat-driven steric variability

- Correction of inaccurate dynamics
 - Tides errors due to bathymetry inaccuracies (part of dynamical equations)
 - Vertical turbulence closure inaccuracies leads to errors in vertical density distribution
 - Assimilation should not be a replacement for accurate dynamics
 - A system MUST represent the dynamics contained in the input data

Need for Observations

- An accurate numerical model should reproduce realistic statistics without assimilation
- Mean flow, position of currents
- Eddy variability
- Eddy statistics (size, speed, energy, ...)

Without assimilation, modeled mesoscale features do not match synoptic reality.

With assimilation, modeled mesoscale features match synoptic reality.

Observed IR positionModel positionSmedstad et al., 1998

ERS-1 and TOPEX ASSIMILATION

NO ASSIMILATION

Japan Met Agency Analysis Cycle (Kuragano)

4D_OI: space(3D)-time(1D) optimum interpolation. 3D_OI: space(2D for horizon)-time(1D). Converter: statistical regression method. Vertical EOF fitting: linear composite of EOF modes to fit OI analysis.

Indirect Observations (Surface Connection to Subsurface)

The deep ocean mesoscale variability is due primarily to displacement of waters of different density.

It is possible (through historical in situ observations) to relate surface height and temperature to subsurface temperature and salinity (and thus density).

Assimilation of only surface data leads to a very slow convergence of the model to observations.

This "synthetic observation" is valuable information to extend the surface observations below the surface rapidly in the assimilation system.

Another way to view this is that we are applying all our knowledge to the problem including historical observations and statistics.

AXBT survey during May 1999

XBT vs. MODAS/GFO

1

Data Combination (Le Traon)

vertical projection of altimetry + SST

2 Combination of the synthetic profile and in-situ

Linear regression

1

synthetic profiles T_{syn}(z), S_{syn}(z)

In-situ profiles T(z), S(z)

Combination using optimal interpolation

3D[T(z), S(z)]

18

Validation of synthetic and in situ profiles (Le Traon)

Validation with independent data for 2002 year

Methodology

- weekly combination of synthetic and in-situ profiles
- interpolation to the space/time location of independent profiles
- interpolation of independent profiles on the standard Levitus levels
- calculation of the differences between in-situ and combined profiles

• Statistics...to characterize the spatial and vertical structure of the error associated to the 3D combined products

Vertical estimation error (Le Traon)

20

Mesoscale

Future potential systems and applications

What is resolvable?

Bad

Chelton et al., High Resolution Ocean Topography Report, 2001

Resolvable area of Topex/Poseidon or Jason-1

> A single nadir altimeter can not resolve the mesoscale.

> > Okay

Best

22

Better Dynamics, Better Results...

NLOM assimilates altimeter track data using the model as a first guess

Need for Accurate Model

Japan Met Agency Analysis Cycle (Kuragano)

Larger meander at Kuroshio Extension in Nowcast run than that in Assimilation run

But we don't learn anything new

By assimilation (OI, data insertion, EnKF, 4-D Var, ...) we force the solution to match the specified dynamics (to some degree depending on covariance errors).

But we don't learn anything new regarding the dynamics.

To learn anything beyond our present dynamical representations we need

- Independent observations
- Sufficient observations to outweigh our present dynamical understanding
- Assimilation systems to demonstrate we have learned something new

Mesoscale

Wide Swath Ocean Altimeter

Ocean Surface Topography Mission

Nadir altimeter

Wide swath altimeter

Integrated Ocean Observation System

SURA Coastal Ocean Observation System

Regional Modeling

Model/Data Sea Level Comparison

Bay and Estuaries

Optical Future (Ted Strub)

Optical Future (David Griffin)

Next Generation Geostationary Satellite - GOES-R

- Responds to national operational environmental requirements
- Provides higher spatial resolution, enhanced spectral information, improved coverage, and more rapid updates to better predict severe weather
 - Better able to discern details that indicate storm formation and provides more accurate wind tracking for model inputs
 - Improved monitoring of volcanic ash, aviation icing hazards, mid-level moisture tracking, and snow/cloud discrimination
 - Able to monitor severe local storms without impacting global coverage
- Program is based on launch readiness by the start of the next decade

GOES R Observational Requirements* Preliminary Instrument Allocation

Absorbed Shortwave Radiation	Downward Solar Insolation	Rainfall Potential				
Aerosol Detection	Dust/Aerosol	Rainfall Rate/QPE				
Aerosol Particle Size	Energetic Heavy lons	Reflected Solar Insolation				
Aircraft Icing Threat	Enhanced "V"/Overshooting Top Detection	Sea & Lake Ice/ Displacement and Direction				
Atmospheric Vertical Moisture Profile	Fire / Hot Spot Imagery	Sea & Lake Ice/Age				
Atmospheric Vertical Temperature Profile	Flood/Standing Water	Sea & Lake Ice/Concentration				
Capping Inversion Information	Geomagnetic Field	Sea & Lake Ice/Extent and Characterization				
CH₄ Concentration	Hurricane Intensity	Sea & Lake Ice/Surface Temp				
Clear Sky Masks	Ice Cover/ Landlocked	Sea Surface Temps				
Cloud & Moisture Imagery	Imagery: All-Wx/Day-Nite	Snow Cover				
Cloud Base Height	Land Surface (Skin) Temperature	Snow Depth				
Cloud Ice Water Path	Leaf Area Index (LAI)	SO ₂ Concentration				
Cloud Imagery	Lightning Detection	Solar and Galactic Protons				
Cloud Layers / Heights and Thickness	Low Cloud and Fog	Solar Flux: EUV				
Cloud Liquid Water	Mag Electrons & Protons: Low Energy	Solar Flux: X-Ray				
Cloud Optical Depth	Mag Electrons & Protons: Med & High Energy	Solar Imagery				
Cloud Particle Size Distribution	Microburst Winds	Surface Albedo				
Cloud Phase	Moisture Flux	Surface Emissivity				
Cloud Top Height	Ocean Currents	Suspended Matter				
Cloud Top Pressure	Ocean Color	Total Precipitable Water				
Cloud Top Temperature	Ocean Optical Properties	Total Water Content				
Cloud Type	Ocean Turbidity	Turbulence				
CO Concentration	Cil Spill Location	Upward Longwave Radiation				
CO ₂ Concentration	Ozone Layers	Vegetation Fraction				
Convection Initiation	Ozone Total	Vegetation Index				
Derived Motion Winds	Pressure Profile	Visibility				
Derived Stability Indices	Probability of Rainfall	Volcanic Ash				
Downward Longwave Radiation	Radiances					
ABI – Advanced HES – Hyperspectral SEM – Space SXI – Solar X-Ray GLM – GOES						
Baseline Imager Environmental Suite Environment Monitor Imager Industry Lightning Mapper						

* Does not reflect individual geographic coverage requirements.

Optical Future (John Kindle)

Assimilation of Satellite Imagery and Numerical Models

SeaWIFS composite

Sep 30-Oct 7 2002

Global NCOM: Oct 3 2002

Conclude

Altimeter observations are essential for understanding the synoptic mesoscale dynamics and fluxes

Mesoscale interacts with coastal region and produces observable effects in nondynamic observables

Altimeter community, biology, geology, chemistry, ... communities need to bring the components together

