Time-Variation Gravity and Ocean Connections

B. F. Chao⁽¹⁾, C. M. Cox⁽²⁾, A. Y. Au⁽²⁾, J-P. Boy⁽¹⁾

(1) Space Geodesy Branch NASA Goddard Space Flight Center Greenbelt, MD 20771, USA

(2) Raytheon ITSS and Space Geodesy Branch NASA Goddard Space Flight Center Greenbelt, MD 20771, USA

Measuring time-variable gravity with GRACE

Better gravity field for Precise Orbit Determination

Better geoid for dynamic height

Time-variable gravity signal

Satellite Laser Ranging SLR

SLR observed J₂ (non-seasonal, non-atmosphere, non-tidal)

Cox and Chao (2002)

Equatorial Pacific + Indian SSH from T/P (1st EOF/PC)

Extratropic North and South Pacific SSH (1st EOF/PC)

Extratropic North+South Pacific SSH and SST (1st EOF/PC)

ECCO model - North Pacific EOF/PC Analysis

ECCO model - South Pacific EOF/PC Analysis

ECCO vertical profiles EOF/PC, E-W 35°N in N. Pacific

ECCO vertical profiles EOF/PC, E-W 50°S in S. Pacific

ECCO vertical profiles EOF/PC, N-S 190°E in S. Pacific

Chen et al. (2003) Scenarios using T/P SSH + ECCO steric

Fujimoto et al. (2003) Ocean Bottom Pressure, SE Pacific


```
Earth Rortation (3-D)
= LOD (1-D) + Polar motion (2-D)
```

Like time-variable gravity, (oceanic) angular momentum also reflects global mass transport (in ocean).

Good correspondence, but relatively small amplitude of OAM reported: Johnson et al. (2001; 2002) for POCM_4B Gross et al. (2003, poster) for ECCO SLR observed J₂ (non-seasonal, non-atmosphere, non-tidal)

SLR-observed J3 variation (non-atmospheric)

Observed S _{2,2} with 12 month offset and SOI

"Conclusions"

- Large 1998-2002 anomaly in J₂ rate
 - Short term deviation or something more?
 - ⇒ Appears to be short term returning to "normal" (prior trend)
- Not atmosphere
- Ice melting scenarios have issues:
 - Needs several hundred km³ of ice melting per year!
 - Implying too much GSL change Where does the water go?
 - J₂ returning to "normal" Implies rapid ice accumulation
 - Conversely, they can't be ruled out entirely
 - ⇒ The Greenland and West Antarctica data imply fairly rapid changes
- Ocean?
 - Extratropic Pacific 1998-2002 anomaly
 - ⇒ Following the big 1997-98 El Nino (tropical) but manifesting in extratropic North and South
 - ⇒ Consistent with timing of PDO and extratropic SST, salinity, and SSH changes
 - Recent changes in SSH implied J₂ commensurate in magnitude
 - ECCO model only explains 1/4 to 1/3 of the J₂ anomaly
- Open issues: Ocean steric effects, Mass conservation, Hydrology, Polar Sea influences, Core mass flow, Other gravity harmonics, Earth rotation...