

Assessment of the TMR/JMR brightness temperatures and products

E. Obligis, N. Tran and L. Eymard

Comparison with AMSU-A TBs over Amazonian Forest Comparison with ECMWF simulations Validation of the TMR/JMR products using radiosonding measurements JMR jump/yaw impact Conclusions

Mean TB over a stable reference target : the Amazonian forest

Mean TB (K)									
Freq (GHz)	18.0*	18.7	21.0	23.8	31.4	34.0	36.5	37.0	#
Amsu-A at nadir	-	-	-	285.8	282.7	-	-	-	641
TMR	278.6	-	278.1	-	-	-	-	277.6	2160
JMR	-	283.5	-	283.4	-	280.2	-	-	227
SSM/I	-	284.2	-	283.4	-	280.5	-	-	14564
ERS-2	-	-	-	285.7	-	-	291.9	-	3937

• TMR brightness temperatures too low regarding AMSU

• JMR/SSMI in perfect agreement

Jason-1/Topex Science Working Team Meeting Arles, November 2003

3

cne

TMR 18 GHz drift correction

Difference between GDR and bi-frequency dh

 \Rightarrow After correction of the 18 GHz drift, difference between bifrequency (21 and 37 GHz) products and standard products is constant.

⇒ Efficient correction

CE

Comparison with radiosonde measurements

For radiosonde (X) in [-0.15; 0] m	JMR	TMR	TMR* (recomputed)	ERS-2** (recomputed)	
Mean(Y-X) (mm)	5.5	3.9	8.7	-3.8	
Std(Y-X) (mm)	12.3	11.9	11.8	14.9	

* 18.0 GHz Measurements corrected for the drift and then re-computation of the wet tropo. corr. (C. Ruf, June 2002) **measurements ajusted and use of the Envisat NN algorithm (E. Obligis et al., 2003)

⇒TMR 18 GHz drift correction degrades the product

 \Rightarrow JMR and TMR overestimate between 0 and 15 cm

Comparison between 2002 and 2003 : daily mean for each TB

Jason-1/Topex Science Working Team Meeting Arles, November 2003 11

Survey of the JMR coldest ocean points

3 different estimations of drifts in K/year

	TB18.7	TB23.8	TB34
Daily mean global	+0.2	-0.6	-0.4
Daily differences with TMR X_1h very high latitudes > 60°	+0.1	-1.0	-0.5
Ocean coldest points high latitudes > 40°	+0.2	-0.3	-0.5

Mean drifts on the 3 brightness temperatures produce expected behaviour of the bi-frequency algorithms

Conclusions

TMR

- the 18 GHz drift correction degrades the recomputed product versus radiosonding measurements
- strong yaw state dependence
- TMR brightness temperatures appear very stable in time since Jason launch

JMR

- products comparison with radiosonde measurements shows a quite good agreement
- descending ramp on dh during October and November 2002 (cycles 27 to 32)
- since this ramp, the yaw state dependence reappears
- at least TBs of channels 2 and 3 are decreasing
- ⇒ Instrumental parameters survey is needed to explain these different features

