

New Retracking Algorithm Using a Second Order Waveforms Model

Pierre THIBAUT, Laiba AMAROUCHE and Ouan Zan ZANIFE

INTRODUCTION

Objective :

The ground segment has to take into account problems of mispointing of the Jason-1 platform

The aim of this study is to propose a new formulation of the echo model to be able to estimate the altimetric parameters even when the platform is not well pointed

Summary of the presentation :

⇒ Analytical formulation of the second order model

⇒ Use of this model to estimate the altimetric parameters in the case of high mispointing angles on real Poseidon-2 data

⇒ During the first STR incident

 \Rightarrow On a cycle of data

⇒ Conclusions

The altimetric waveform model can be written as the convolution of three terms :

- The radar response to a sea surface without waves and an infinitely short pulse : **FSSR**
- The probability density function of the wave heights : **PDF**
- The point target response of the radar : **PTR**

S(t) = FSSR(t)*PTR(t)*PDF(t)

RADAR RESPONSE TO A SEA SURFACE WITHOUT WAVES AND AN ININITELY SHORT PULSE

Before simplification, the FSSR is written as follows (Brown 77) :

$$FSSR(t) = Aexp(-\delta t)U(t)\sum_{k=0}^{\infty} \frac{(-1)^{k}\Gamma(k+1/2)}{\sqrt{\pi}\Gamma(k+1)} \left[\frac{\gamma\beta t^{\nu_{2}}}{8cos^{2}\xi}\right]^{k} I_{k}(\beta t^{\nu_{2}}) \qquad \text{With:} \qquad \beta = \frac{4[c}{\gamma} \frac{1}{h} \int^{2} sin(2\xi) A = A_{0}exp\left[-\frac{4}{\gamma}sin^{2}\xi\right]$$

The I_k functions are the Bessel 's modified functions. Brown has only kept the order 0 Bessel 's functions. Upper order terms are negligeable (for $\xi < 1^{\circ}$) because : $\frac{\gamma \beta t^{\nu_2}}{8cos^2 \xi} << 1$

FSSR can be written as follows:

$$FSSR(t) = Aexp(-\delta t)I_{0}(\beta t^{1/2})U(t)$$

$$I_{0}(z) = \sum_{n=0}^{\infty} \left(\frac{z^{2}}{4}\right)^{n} \left(\frac{1}{n!}\right)^{2}$$
With: $z = \beta t^{1/2}$

$$\begin{cases} \frac{1^{st} \operatorname{Order:} \operatorname{good} \operatorname{for} \xi < 0.4^{\circ} \operatorname{for} \operatorname{gate} 90 \\ 0.3^{\circ} \operatorname{for} \operatorname{gate} 128 \\ 2^{nd} \operatorname{Order:} \operatorname{good} \operatorname{for} \xi < 0.7^{\circ} \operatorname{for} \operatorname{gate} 90 \\ 0.6^{\circ} \operatorname{for} \operatorname{gate} 128 \end{cases}$$

4

S

 $\delta = \frac{4c}{\gamma h} \cos(2\xi)$

1st ORDER MODELIZATION

Using 0th and 1st order development of the Bessel 's functions and writting the result on an exponential form : $\beta_{2t} = \beta_{t}^{2t}$

 $I_0(\beta t^{1/2}) \approx 1 + \frac{\beta^2 t}{4} \approx e^{\frac{\beta^2 t}{4}}$

The waveform can be written simply as follows :

With :

$$W(t) = Aexp(-v)[1 + erf(u)]$$

$$u = \frac{t - \tau - \alpha \sigma_c^2}{\sqrt{2}\sigma_c} \qquad v = \alpha \left(t - \tau - \frac{\alpha}{2}\sigma_c^2\right) \qquad \alpha = \delta - \frac{\beta}{2}$$

This exponential formulation is true for mispointing angles lower than 0.25°

2nd ORDER MODELIZATION

$$I_{0}(\beta t^{1/2}) \approx 2e^{\frac{\beta^{2}t}{8}} - 1$$

The altimetric echo model can thus be written as follows, after convolution of the 3 terms :

$$W(t) = Aexp(-v_1)\left[1 + erf(u_1)\right] - \frac{A}{2}exp(-v_2)\left[1 + erf(u_2)\right]$$

With:
$$u_1 = \frac{t - \tau - \alpha_1 \sigma_c^2}{\sqrt{2}\sigma_c} \qquad v_1 = \alpha_1 \left(t - \tau - \frac{\alpha_1}{2}\sigma_c^2\right) \qquad \alpha_1 = \delta - \frac{\beta^2}{8}$$
$$u_2 = \frac{t - \tau - \alpha_2 \sigma_c^2}{\sqrt{2}\sigma_c} \qquad v_2 = \alpha_2 \left(t - \tau - \frac{\alpha_2}{2}\sigma_c^2\right) \qquad \alpha_2 = \delta$$
$$\delta = \frac{4c}{\gamma h} cos(2\xi) \qquad \beta = \frac{4}{\gamma} \left[\frac{c}{h}\right]^{1/2} sin(2\xi)$$

Comparison of the new formulation with the expression used in the Poseidon-2 ground retracking and with the function obtained from the three terms convolution (with a complete Bessel 's function)

Drawback of a second order model : impossibility to derive the mispointing angle from the slope of the trailing edge

<u>Several solutions were investigated :</u>

- Use of a MLE2 (ξ^2 and σ_0) on the trailing edge of the echo : problems of stability
- Use of a correction table to derive the real mispointing angle from the on board mispointing angle
- Use of a MLE 4 parameters (Range, SWH, σ_0 and $\xi 2$)

The comparison is done on the altimetric parameters (SWH,SSH and σ 0) computed by :

- CMA retracking algorithm
- MLE4 based on a second order model (SWH,range, σ 0 and mispointing angle ξ^2)
- Topex data

04/04/2002 First Star Tracker Incident Cycle 008

SWH (Missions J1 Ret et J1 Ref)

04/04/2002 First Star Tracker Incident

Significant Wave Height MLE4 New Model - CMA IGDR

Significant Wave Height TOPEX GDR - MLE4 New Model

SSH (Missions J1 Ret et J1 Ref)

04/04/2002 First Star Tracker Incident

Sea Surface Height MLE4 New Model - CMA IGDR

Sea Surface Height TOPEX GDR - MLE4 New Model

SIG0 (Missions J1 Ret et J1 Ref)

04/04/2002 First Star Tracker Incident

Sigma 0 TOPEX GDR - MLE4 New Model

GENERAL CALVAL RESULTS ON CYCLE 061 (using Doris ionospheric correction) (1/2)

	MLE-3	MLE-4
Number of passes	253	253
Number of data	674968	674968
Number of missing data	153717	153717
Number of valid data	498594	496470
Number of edited data	176374	178498
Percentage of edited data	26.13 %	26.44 %

SSH Crossover Analysis	9.08 cm	8.86 cm
EM Bias (% SWH)	-3.55	-3.57
Time-Tag Bias	0.263 ms	0.256 ms

GENERAL CALVAL RESULTS ON CYCLE 061 (using Doris ionospheric correction) (2/2) Ku band

RMS_Range_MLE4 - **RMS_Range_MLE3** = 0.6 cm

SWH_MLE4 - SWH_MLE3 = -3.8 cm

 $Sig0_MLE4 - Sig0_MLE3 = 0.05 dB$

 $\xi_{MLE4} - \xi_{MLE3} = 0.095 \text{ deg}$

Number of valid points per second is equivalent

No evolution of the MQE parameter

COMPARISON OF MLE-3 and MLE-4 RETRACKING ALGORITHMS (cycle 61)

RMS of Ku-band Range

RMS_MLE4 - RMS_MLE3 = 0.6 cm

COMPARISON OF MLE-3 and MLE-4 RETRACKING ALGORITHMS (cycle 61)

Square of the off nadir angle from waveforms (unit : deg2) Square of the off nadir angle from waveforms (unit : deg2) MLE-3 MLE-4 1000 100 1000 800 -000 500 200 -0.18 -0.12 -0.06 -0.04 -0.00 0.04 0.06 0.12 0.16 -0.18 -0.12 -0.06 -0.04 -0.00 Jakes -1 Cycle 061 -0.00 0.04 0.06 0.12 0.16 -0.20-0.20 Jaion-1 Cycle 061 Global nb of points 0.000 Global ab of points 496465 Sample interval 0.000 498594 Sel. nb of points 498394 Sataple interval : 496470 Sel. nb of points Global mean -0.006 Maximum value : 0,160 0.003 Maximum value : 0.160 -0.006 Selected mean Global mean 0.003 Selected mean cnes cnes CLS CLS Global SM 0.025 Selected and 0.025 Minimum value -0.200Global Std 0.024 Selected and 0.024 Minimum value -0.174

Mispointing Angle

 ξ^{2} _MLE4 - ξ^{2} _MLE3 = 0.009 deg²

 $\xi_{MLE4} - \xi_{MLE3} = 0.095 deg$

CLS

MLE-3

MLE-4

SWT Meeting - 19-11-2003 - Arles - P.Thibaut & al

MLE-3

MLE-4

SWT Meeting - 19-11-2003 - Arles - P.Thibaut & al

SWT Meeting - 19-11-2003 - Arles - P.Thibaut & al

Track Point Shift MLE-3

Track Point Shift MLE-4

SSH-Res

MLE-3

SSH-Res MLE-4

MLE-3

MLE-4

I DELAY LONG OF

Cycle061

MLE-3

MLE-4

GENERAL CONCLUSIONS

- A compact formulation has been proposed. It 's very close to the first order model formulation.

- It is « easy » to implement this formulation in the ground processing chains.
- This model is valid up to 0.7°. (instead of 0.3° for 1st order model)

- This formulation has been used to estimate altimetric parameters (range, SWH, PUI et ξ^2) for high mispointing angles values. Results obtained with this new formulation have been analysed and are good and coherent with those obtained by simulation

