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Residual EM bias error

Residual error = remaining bias after correction by empirical
parametric or nonparametric wind/wave model:

Residual error = bias — meanbias(U,H)
Due to finite fetch effects, multiple wave trains, etc., U,H pair
does not uniquely specify sea state and hence residual EM bias

variability remains.

Goal: Study correlation of residual error with U,H using In situ
tower bias measurements.
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Residual bias error - time series
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RMS residual bias error
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Residual error in wind speed/SWH bins after correction by nonparametric model

Shaded areas indicate low data density
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Physics-based EM bias model

Use physics-based model with an additional sea state parameter
(RMS long wave slope) to study residual error.

Theoretical form of EM bias:

Bias =—y(U,H)SH

S = RMS long wave slope (cutoff = 2.4 m)
H = Significant wave height (SWH)

Theory: y = constant (0.6), determined by small wave spectrum

Empirical: fit y(U,H) to tower data set using low order polynomial
model
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Empirical fit of model coefficient

Fit of y(U,H) to tower data set

*Dependence is simple - nearly linear in SWH
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Physics-based model
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results
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Predicted and measured EM bias
Residual errors in cm units on same scale
Errors (mean+1std): -0.52 + 1.1cm (-0.14 £ 0.78%H) for bias = 0.6SH

0.01 £0.51cm (0.01 +0.41%H), parametric model, bias = y(U,H) SH
0 £04cm ( 0 +0.30%H), nonparametric model, bias = f(U,H)
«Parametric physics-based model is nearly as good as nonparametric model,
with the benefit of more smoothing and less noise sensitivity

Nonparametric model for comparison
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Residual vs. RMS slope

Residual Error vs Wave Slope
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Residual error - correlation
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* RMS slope explains much of residual
variability

* Vertical spread gives magnitude of
residual error in each wind/wave bin

* Horizontal spread is variability of RMS
slope

* Slope of line fit gives sensitivity of bias to
RMS slope
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Instrument cross-comparison
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Goal: Study correlation of environmental state with wind speed, SWH, bias
Co-located SeaWinds-on-Quikscat wind speed measurements
*Temporal collocation within 30 minutes

Orbit overlap for: @JTIntemAray@14747_J010_125_Te25239
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Sample orbit passes of Jason-1 wind speeds overlaid on SeaWinds
Jason-1 (red), SeaWinds, and TRMM Pink shows differences greater than 2m/s

*Discrepancies are correlated with mesoscale
wind field/rain features
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e cm-order residual bias variability remains after
correction by mean bias at a given wind speed/SWH

* RMS long wave slope explains much of this residual
variability

e Variability and sensitivity to RMS slope is correlated
with sea state

e Variability may also be correlated with mesoscale
environmental features
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