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Residual EM bias error

Residual error = remaining bias after correction by empirical
parametric or nonparametric wind/wave model:

Residual error = bias – meanbias(U,H)

Due to finite fetch effects, multiple wave trains, etc., U,H pair 
does not uniquely specify sea state and hence residual EM bias 
variability remains.  

Goal:  Study correlation of residual error with U,H using in situ
tower bias measurements. 



Jason-1 SWT - Arles, Nov. 2003

Residual bias error - time series
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RMS residual bias error
Residual error in wind speed/SWH bins after correction by nonparametric model

fit to tower data
Shaded areas indicate low data density
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Physics-based EM bias model

Use physics-based model with an additional sea state parameter
(RMS long wave slope) to study residual error.

Theoretical form of EM bias:

S = RMS long wave slope (cutoff = 2.4 m)
H = Significant wave height (SWH)

Theory:  γ ≈ constant (0.6), determined by small wave spectrum

Empirical:  fit γ(U,H) to tower data set using low order polynomial
model

SHHU ),(γBias −=
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Empirical fit of model coefficient
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•Dependence is simple - nearly linear in SWH
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Physics-based model - results
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Predicted and measured EM bias
Residual errors in cm units on same scale
Errors (mean±1std):  -0.52 ± 1.1cm  (-0.14 ± 0.78%H) for bias = 0.6SH

0.01  ± 0.51cm (0.01  ± 0.41%H), parametric model, bias = γ(U,H) SH
0  ± 0.4cm   (    0   ± 0.30%H), nonparametric model, bias = f(U,H)

•Parametric physics-based model is nearly as good as nonparametric model, 
with the benefit of more smoothing and less noise sensitivity

Nonparametric model for comparison
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Residual vs. RMS slope
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Residual error - correlation

• RMS slope explains much of residual 
variability

• Vertical spread gives magnitude of 
residual error in each wind/wave bin

• Horizontal spread is variability of RMS 
slope

• Slope of line fit gives sensitivity of bias to 
RMS slope
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Instrument cross-comparison
Goal:  Study correlation of environmental state with wind speed, SWH, bias
Co-located SeaWinds-on-Quikscat wind speed measurements

•Temporal collocation within 30 minutes

Sample orbit passes of 
Jason-1 (red), SeaWinds, and TRMM

Jason-1 wind speeds overlaid on SeaWinds
Pink shows differences greater than 2m/s
•Discrepancies are correlated with mesoscale
wind field/rain features
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Conclusions

• cm-order residual bias variability remains after 
correction by mean bias at a given wind speed/SWH

• RMS long wave slope explains much of this residual 
variability

• Variability and sensitivity to RMS slope is correlated 
with sea state

• Variability may also be correlated with mesoscale
environmental features
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