Incidence Angle Dependence of EM Bias

Karl F. Warnick, Floyd W. Millet and David V. Arnold Department of Electrical and Computer Engineering Brigham Young University

November 10, 2003

Hydrodynamic modulation

Wide-swath altimeter

Simple hydrodynamic model [Melville and Felizardo, 1999]:

$$h_s(\eta) = h_s(0) \left[1 + S \eta / h_l \right]$$

where S is RMS long wave slope, h_s is small wave surface height standard deviation, and η is displacement from mean sea level.

Physical optics scattering from tilted/modulated surface facets

Bias(
$$\theta$$
) = $\frac{E[\eta \sigma_0(\theta)]}{E[\sigma_0(\theta)]}$

BYU Off-Nadir Experiment (Y-ONE)
March-April 2003
Gulf of Mexico, Shell Offshore platform
C, Ku band Doppler radars, laser rangefinder
Environmental data including wind, temp
Incidence angles: -3° to 17°, 5 minutes/angle

Results

Incidence Angle vs. EM Bias, YONE 5 SWH = 0.5mMean Values SWH = 1mSWH = 1.5mSWH = 2m0 0 EM Bias (cm) EM Bias (cm) -5 -2-3 -10<u>-</u>0 5 10 15 20 2 10 12 16 0 4 6 8 14 Incidence Angle (^o) Incidence Angle (°)

Predicted bias

Experimental measurements Error bars are ± one sigma Mean significant wave height: SWH = 0.9m (results are preliminary)

Time series - SWH

Bias vs. significant wave height

Relative bias vs. RMS slope

Summary/Conclusions

- Experimental measurements and theoretical analysis predict decrease in EM bias as incidence angle increases
- Mean EM bias may change sign at mid-range incidence angles
- Wide-swath instruments may require incidence-angle dependent correction
- Multiple looks at a given surface footprint at different incidence angles may be used to improve bias correction