Comparison of sequential and variational reduced order data assimilation methods in the tropical Pacific ocean

Céline ROBERT¹, Eric BLAYO¹ and Jacques VERRON²

¹LMC-IMAG, Grenoble, France ²LEGI, Grenoble, France

Objectives of the work

- Synthesis of previous works performed on reduced-order data assimilation methods
 - ▷ Reduced-order 4D-Var
 - ⊳ Seek filter
- Implement and compare each method in the same realistic configuration
 - ▷ Tropical Pacific ocean

4. Twin experiments

- The observations are generated by the non-linear model at TAO points. The experiments are performed over the year 1993.
- The initial basis is composed of the thirty first modes of an Eofs analysis of a free run over the year 1993. The Seek filter runs with a forgetting factor equal to 0.7. The basis is fixed. Rms error values are calculated on the 2nd level of the model : 15 m. depth.

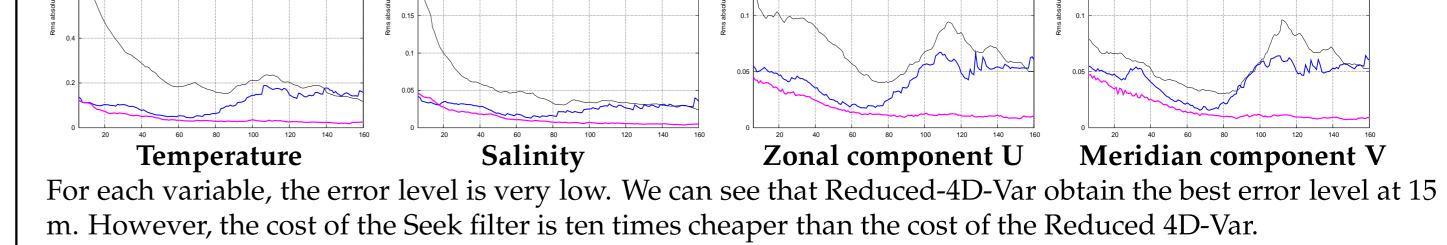
▷ Assimilation of real temperature data profiles

• Perform an hybridation of the two methods in this same configuration.

1. Configuration of the experiments : Tropical Pacific ocean

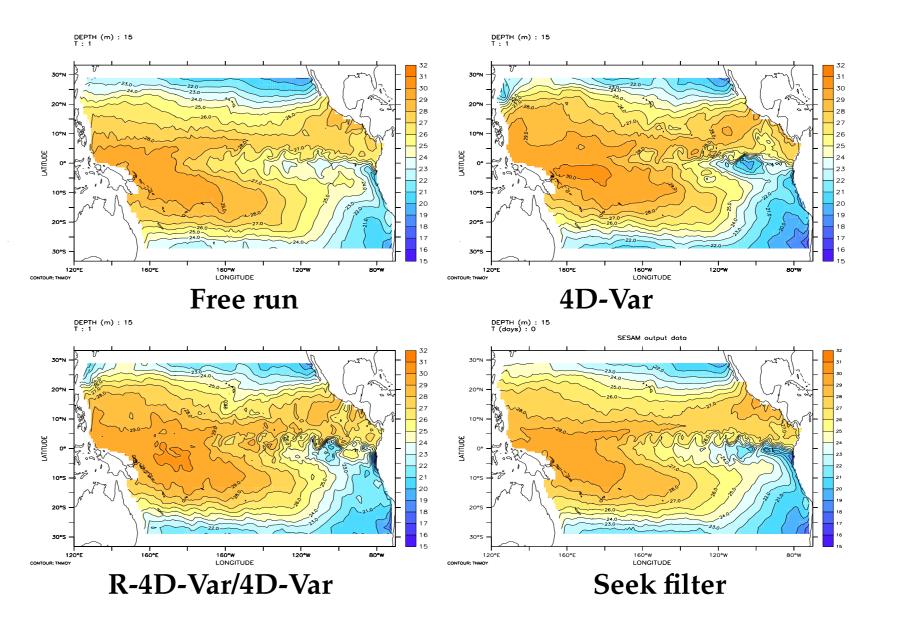
1.1 Numerical model

Numerical model : OPA-TDH (Vialard *et al.*, 99) Tangent linear model and adjoint model (Weaver and Vialard, 2003) Atmospheric forcing : daily ERS-TAO winds and ECMWF fluxes One year of experiment : 1993.


1.2 Data assimilation parameters

- Observed data : 3D temperature field from TAO/TRITON array
- Observation error : Diagonal error covariance matrix on observations $\mathbf{R} = 1/\sigma_i^2 I_n$ with $\sigma_i = 0.5^{\circ} \text{ C}$

2. Incremental variational algorithm


2.1. Cost function

The cost function mesures the distance between the model solution and the observations. A regularisation term is added: the solution must be close to the background.

5. True experiments

The observations are real profiles from TAO array and XBT. The experiments are performed over the year 1993. The Seek filter runs with a forgetting factor equal to 1. The basis is fixed. **Analysis** : these figures shows the annual mean of the analysed states.

•
$$\delta \mathbf{x} = \mathbf{x} - \mathbf{x}_b$$
, $J_{tot}(\delta \mathbf{x}) = J_b(\delta \mathbf{x}) + J_o(\delta \mathbf{x}) = \frac{1}{2} \delta \mathbf{x} \mathbf{B}^{-1} \delta \mathbf{x}^T + ||\mathbf{y} - H(\mathbf{x})||_{obs}^2$

• Incremental formulation:
$$J_o = \frac{1}{2} \sum_{i=1}^n (\mathbf{d}_i - \mathbf{G}_i \delta \mathbf{x})^T \mathbf{R}_i^{-1} (\mathbf{d}_i - \mathbf{G}_i \delta \mathbf{x})$$
 with $\mathbf{d}_i = \mathbf{y}_i - H_i [\mathbf{x}^b(t_i)] = \mathbf{y}_i - G_i (\mathbf{x}^b)$

The dependance on δx is linear which allows simple descent solving method to find the minimum. This minimisation is performed using a gradient method, in which the gradient of the cost function is calculted using the **adjoint model**.

2.2. Reduced order approach

We look for an increment in a reduced dimension space spanned by a set of well-chosen vectors. The increment is calculated in this subspace by : $J_b(\mathbf{w}) = \frac{1}{2}\mathbf{w}^T \mathbf{B}_w^{-1}\mathbf{w}$ with $\delta \mathbf{x}^r = \sum w_i \mathbf{L}_i = \mathbf{L} \mathbf{w}$ where $\mathbf{w} = (w_1, ..., w_r)$

- Definition of **B** in the reduced space : $\mathbf{B}_w = E[(w \overline{w})(w \overline{w})^T]$
- Definition of **B** in the full space : $\mathbf{B}_r = E[(\delta x \delta \overline{x})(\delta x \delta \overline{x})^T]$

3. SEEK filter algorithm

Initialisation

The algorithm is initialised by a mean state of the model without assimilation.

 $\mathbf{x}_{k=0} = \mathbf{x}_0$ $\mathbf{P}_{k=0} = \mathbf{S}^0 \mathbf{S}^{0T}$

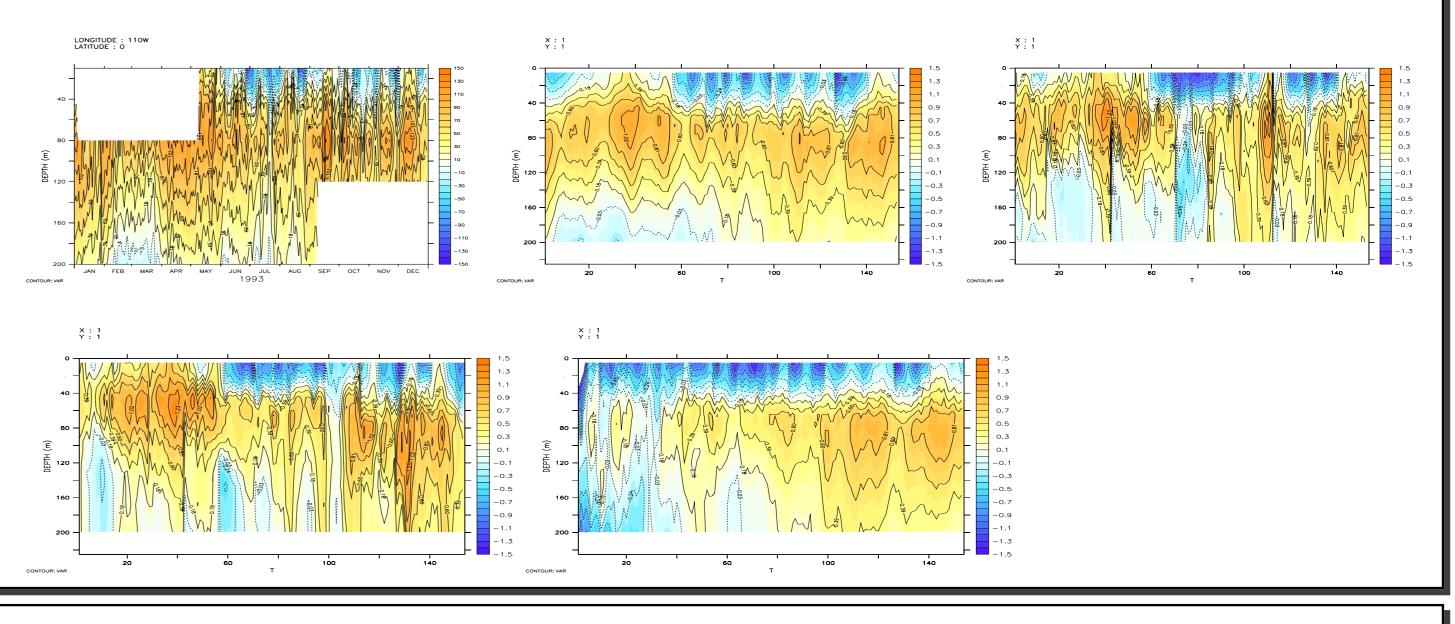
Analysis

Analyses are performed every 10-days,

Forecast Forecast is performed over 10 days.

$$\mathbf{x}_{k+1}^{f} = M_{k,k+1}[\mathbf{x}_{k}^{a}]$$
$$\mathbf{P}_{k+1}^{f} = \frac{1}{\rho} \mathbf{S}_{k+1}^{f} (\mathbf{S}^{f})_{k+1}^{T}$$

Basis evolution


In case of basis evolution, each vector is propagated

160°₩ LONGITUDI

The Reduced 4D-Var alone doesn't work well in this real data experiment. The Seek filter tends to produce low-gradient states. The best solution is obtained by a mixed algorithm Reduced 4D-Var/4D-Var, combining 10 iterations of Reduced 4D-Var followed by 10 iterations of full 4D-Var.

6. Validation of the results

We compare model forecasts with (U,V,T,S) data profiles at TAO points. Globally the model without assimilation provides a solution which is too smooth. Data assimilation with the Seek filter tends to improve these results. The best solution is provided by the mixed 4D-Var (but for a 10 times greater computation cost). We can see on these figures a vertical profile of the zonal component of the velocity at (110°W 0°N), as a function of time.

Conclusions 6.

with observations from the past 10-days

over the cycle by the fully non-linear model.

$\mathbf{P}_{k}^{f} = \mathbf{S}_{k}^{f} \mathbf{S}_{k}^{fT} \qquad \mathbf{P}_{k+1}^{f} = \mathbf{P}_{k}^{a} = \mathbf{S}_{a}^{k} \mathbf{S}_{a}^{kT}$ $\mathbf{K}_{k} = \mathbf{S}_{k}^{f} [I + (\mathbf{H}_{k} \mathbf{S}_{k}^{f})^{T} \mathbf{R}_{k}^{-1} (\mathbf{H}_{k} \mathbf{S}_{k}^{f})]^{-1} (\mathbf{H}_{k} \mathbf{S}_{k}^{f})^{T} \mathbf{R}_{k}^{-1} \qquad [\mathbf{S}_{k+1}^{f}]_{r} = M[\mathbf{x}_{k}^{a} + [\mathbf{S}_{k}^{a}]_{r}] - M[\mathbf{x}_{k}^{a}]$ $\mathbf{x}_{k}^{a} = \mathbf{x}_{k}^{f} + \mathbf{K}_{k}[\mathbf{y}_{k} - \mathbf{H}_{k}\mathbf{x}_{k}^{f}]$ $\mathbf{P}_{k}^{a} = \mathbf{S}_{k}^{f}[I + (\mathbf{H}_{k}\mathbf{S}_{k}^{f})^{T}\mathbf{R}_{k}^{-1}(\mathbf{H}_{k}\mathbf{S}_{k}^{f})]^{-1}\mathbf{S}_{k}^{fT}$

Link Seek-Reduced 4D-Var :

The reduced-dimension error space is the same for the Reduced 4D-Var and the Seek filter.

 $\mathbf{P}_{k=0} = \mathbf{S}^0 \mathbf{S}^{0T}$

 $\Rightarrow \mathbf{P}_{k=0} = \mathbf{L}\mathbf{\Lambda}\mathbf{L}^T \equiv \mathbf{B}_r$

Reduced 4D-Var is a very good alternative to classical 4D-Var in twin experiments : it leads to a better identification of the true state for a cheaper computation cost. When assimilating real data, the Reduced 4D-Var alone doesn't lead to realistic solution while the Seek filter does. Improved results seem to be obtained with a Mixed Reduced 4D-Var/4D-Var approach. These conclusions need to be confirmed in an El Niño situation in which the Seek filter is known to be robust.

References

- [1] S. Durbiano, Vecteurs caractéristiques de modèles océaniques pour la réduction d'ordre en assimilation de données, Phd Thesis, LMC-UJF, (2001)
- [2] L.Parent, Assimilation de données dans l'océan PAcifiwue Tropical sur la période 1994-1998, Phd Thesis, LEGI-UJF,, (2000)
- [3] D.T. Pham, J. Verron, M.C. Roubaud, A singular evolutive extended Kalman filter for data assimilation in oceanograhy, Inverse Problems, Vol. 14, 1998.
- [4] A.T. Weaver, J. Vialard, D.L.T. Anderson, Three- and four-dimensional variational assimilation with a general circulation model of the tropical Pacific Ocean, Part 1: formulation, internal diagnostics and consistency checks, Monthly Weather Review, 2002.

Acknowledgements

This work, performed in LMC-IMAG and LEGI laboratories is supported by CNES.