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The purpose of this study is to assimilate various altimetry and tide-gauges data in the barotropic, free-surface, finite element model MOG2 D, covering the Bay of Biscay and nested in a North East Atlantic domain . In a first step, we explore the errors 
sub-space of the model in presence of forcing uncertainties , and especially in presence of high frequency atmospheric forcing errors . This is done by an ensemble modelling approach (Monte-Carlo) in which the atmospheric fields are perturbed in a 
multivariate way : by generating an a priori ensemble of perturbed atmospheric forcing fields (10 meters wind and surface pressure from ARPEGE meteorological model ), and computing the corresponding a posteriori ensemble of model states, one can 
approximate the forecast errors of the model by ensemble spread statistics. These statistics are shown to be neither homogeneous over the domain, nor stationary, since they are very dependent on the meteorological forcing. Then, the forecast covariance 
matrix is modelized through forecast error Ensemble EOFs . These statistics, in form of 6D-EOFs (Sea Level Anomaly, barotropic velocities, surface pressure and wind-stress components), are used in a reduced-order sequential scheme , SEQUOIA, used in 
an Optimal Interpolation configuration with the MANTA kernel developed at LEGOS/POC (De Mey, 2005), to constrain the model forecast in the framework of twin experiments . In a reference experiment, the data assimilation system is calibrated and 
sensitivity tests are conducted. The system provides significant error reduction for all state vector variables, but appears to be sensitive to configuration parameters : particularly, one need to constrain atmospheric forcing fields to achieve an efficient control 
of the model errors. Finally, the capability of realistic observing networks to reduce the model errors are compared. Frequent and regularly spaced observations , such as tide-gauges (SLA) or HF radars and buoys (velocity), appeared to be more adapted to 
the present data assimilation configuration than altimetry data.

Abstract

1 - Model configuration
MOG2D model (Lynch and Gray (1979), adapted by Greenberg and Lyard)
• barotropic
• Non linear
• Finite Element method for spatial resolution (refine study in coastal and steeper

bathymetry area)
• zone = Bay of Biscay (BoB) + English Channel (EC) + Celtic Sea (CS), nested

in European shelf area (Fig. 1 )
• Sea Level Anomaly, barotropic velocities

Configuration :
• Atmospheric forcing : surface pressure

and 10 meters-wind velocity fields derived
from atmospheric models ARPEGE products.

• Tide forcing
• European shelf solution used as open

boundary conditions
• Time period : 16/11/1999, 00:00�01/12/1999, 00:00

Figure. 1 : FE  mesh used in the study: 
Bay of Biscay (BoB) + English Channel 
(EC) + Celtic Sea (CS) nested in 
European shelf
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2 - Barotropic dynamics in response
to atmospheric forcing

Different dynamics behaviour in
the various seas (Fig. 2) : 
• BoB : controlled by pressure

temporal scales (ts) ~ 2 days

• EC : non-isostatic response
ts ~ 1 day

• CS : intermediate response

Figure. 2 : comparison of model and IB SLA response 
to atmospheric forcing in 3 points of the area
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Figure. 3 : Non-isostatic response along sections 1 and 2 of the domain

The non-isostatic dynamic is 
predominant in EC, with Kelvin wave 
propagation (along both
French and English coasts)         
and stationary processes;
it’s much weaker elsewhere.
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Atm. forcing : 

3 - Impact of atmospheric model 
differences on oceanic model results

���� Significant differences : storm surge structures on French Atlantic coasts,
differences patches in EC

Figure 4 : model SLA response to 
various atmospheric forcing products 
from ECMWF, ARPEGE and ALADIN 
models (down) at a fixed time, where a 
strong atmospheric low crosses the 
domain (up) 

Ensemble methodology 

Figure 5 outlines the perturbation strategy/ensemble modelling approach we implemented
in the study :

Perturbation strategy and ensemble simulation:

Figure 5 : perturbation strategy/ensemble modelling approach

4 - Ensemble modelling approach
As a prior requirement (and a research subject) for data assimilation, the specification of 
model errors has shown to be much more complicated in Shelf and Coastal Seas 
(hereafter SCS) than in the open ocean : SCS model errors appear to be 
inhomogeneous, non-stationary, anisotropic and multi-scale (Echevin et al., 2000; 
Auclair et al., 2003; Mourre et al., 2004), due to strong non-linearity of SCS dynamic 
processes, intense control of coastlines and bathymetry, and fast response to 
atmospheric forcing. In our study, the forecast errors are approximated from Ensemble 
(Monte Carlo) simulations of the model in response to atmospheric forcing (p,  ) 
errors .
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8 - Observation network performances

5 - Characterization of model errors via ensemble statistics 
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Figure 8 : significant correlation
of a SLA measure at Weymouth with SLA field

Figure 9 : oceanic error multivariate EOFs (first two dominant modes) and spectrum of variance 
explained by each mode (the first 20)

� Inhomogeneous distribution of oceanic
errors (Fig.6) : 

• SLA : max. error structures in EC,
weaker in BoB

• Ubt, Vbt : mainly in the shallow coastal band
and around cape zone, negligible
in BoB
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Figure 7 : time evolution of ensemble variance for SLA, Ubt, Vbt, 
IB SLA,       ,      at points A and B Xτ Yτ

- In BoB (B) : SLA errors controlled by pressure errors;
velocity errors partially correlated to wind-stress uncertainties

���� Oceanic errors are non-stationary (Fig.7) 
• ~24h error growth

• closely following atmospheric error development :

- In EC (A) : oceanic errors are mainly wind-driven

Figure 6 : time average of ensemble variance for SLA 
and barotropic current components 

Domain of influence (doi) of an
isolated SLA observation at fixed time
(Fig.8) :

• Characteristic dimension ~ atmospheric
synoptic scales (~1000 km)

• Anisotropic structure

• High time variability

• Red spectrum � good representativity of error structures
• 1st mode : error “regime” in EC
• 2nd mode : shelf error “regime”

#1

#2

Covariant error structures in form of oceanic error  multivariate EOFs (Fig.9)

100 EOFs were calculated using ensemble members as samples at 5 various dates
in order to take non-stationarity of errors into account
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7 - Control of model errors via data assimilation

6 - Data assimilation methodology
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2/1=ρ : reduced-order (RO) representer

R : observation error covariances matrix

We implemented the sequential reducedreducedreducedreduced----orderorderorderorder data assimilation code SEQUOIASEQUOIASEQUOIASEQUOIA, used in 
an Optimal Interpolation configurationOptimal Interpolation configurationOptimal Interpolation configurationOptimal Interpolation configuration with the MANTAMANTAMANTAMANTA kernel (De Mey, 2005).

S : error EOFs approximated by ensemble EOFs ( cf. §5)

: forecast error covariances matrix
fP
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f

r diag νν=P kν : error variances of mode k

Analysis step :

The control of model errors due to atmospheric forcing uncertainties is achieved in the framework of twin experiment : a particular member of the perturbed oceanic 
trajectories ensemble is taken as a “control” simulation , from which simulated observations are extracted (and randomly noise added) at 10 tide-gauges 
locations (see Fig.10 ), and then assimilated in another member of the ensemble, a so-called “free” simulation . 

• cost function minimum         :

qualify the intern coherency
of the system (Talagrand, 1999, ECMWF) 
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Figure 12 : diagnostics of the control of the model errors by the system

• 10 real tide gauges (10TG)
• 1.5 cm rms error
• Obs : 
•
• Mean EOFs (cf. §5)
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Figure 10 : 10 TG reference
network

Figure 11 : Jmin diagnostic

• Significant error reduction for
all variables

• visible degradation at the end
of the period (storm) : weak
representativity of error EOFs

• correction zone located 
around TG

choice of the state vector :

YX
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• Oceanic error strongly correlated to atm. errors
• Fast evolution of atm. conditions

Need to correct the atmospheric forcing
in the analysis step

State vector :

� mean(Jmin)~0.5 ensured 
for ensemble variance=1/3 iν
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• Best control for 6h-analysis
• Prediction range (PR) ~ 30h
• Small impact of correction
frequency on PR 

Need to correct the atmospheric
forcing errors in order to efficiently 

control oceanic errors

Figure 13 : sensitivity test to the frequency 
of the correction – Prediction range Figure 14 : sensitivity test to atmospheric

correction

Figure 15 : sensitivity test to time-
dependency of error statistics

Use of pre-computed EOFs at 
analysis time :

• best correction
• faster error growth

Results

Sensitivity tests

Reference configuration
/ obs. network

Diagnostics

Total Error Reduction 4TG, 10TG, 21TG : 4,10,21 tide-gauges
4ALT : Jason+Topex+GFO+Envisat – 15 days
4R2B : 4 HF radars sites + 2 anchored buoys

• need for frequent and regularly spaced
observations

• methodological approach maladapted to
altimetry network

• complementarity of SLA and velocity data

• relevance of a TG + buoy + HF radars

Eigenvalues spectrum of the representer
matrix (scaled by R) : 

2/12/1 −− RHPHR Tf

Measure how many degrees of freedom of the
system errors are captured by the obs. network
(independently of DA)

Similar performance levels over dominant
(large-scale) d.o.f.
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Perspectives
� Oceanic errors : inhomogeneous, anisotropic 
and non-stationary ; fast evolution of errors (~24h) 
strongly correlated to atm. error development.

� Control of the model errors :
• encouraging performances of the reduced-order 
data assimilation system
• need to correct both atmospheric and oceanic 
variables
• the time-dependency of errors should be 
considered
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� real data experiment
� consider the atm. field resolution error in our 
study (with ALADIN, AROME f.i.)
� improve the prediction range length :
• localize the correction
• enhance the OI scheme (f.i. improve the time-
dependency of error EOFs)
• implement a more complex/costly scheme such 
as Reduced-Order Ensemble Kalman Filter or 
Ensemble Kalman Filter
� multiple twin-experiment

Conclusions
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