ZONAL JETS STANDING IN MERIDIONAL FLOW as revealed by joint analysis of satellite and in situ data

International Pacific Research Center (IPRC) School of Ocean and Earth Science and Technology (SOEST) University of Hawaii at Manoa nikolai@soest.hawaii.edu

Nikolai A. Maximenko¹ and Pearn P. Niiler²

Scripps Institution of Oceanography (SIO) University of California, San Diego (UCSD) pniiler@ucsd.edu

ABSTRACT

Jointly processed within a simplified model of balance of horizontal momentum, data of satellite altimetry, drifters, wind and GRACE mission provided a high quality multi-year mean absolute seasurface dynamic topography with fine mesoscale resolution and nearly global coverage. Its accuracy is good enough in a wide range of scales to outline jet-like structures associated both with known currents (such as Azores Current, Hawaiian Lee Countercurrent, etc.) and newly found systems (such as jets in eastern parts of all oceans). It is puzzling how these fine structures are capable of surviving the effects of advection and stirring by sensible meridional flows associated with gyres of wind-driven large-scale ocean circulation.

The answer found in this study suggests that the jets behave as Rossby waves standing in the background flow. Based on the dispersion equation, phase of a Rossby wave may propagate with a meridional component only if it also has a zonal component, i.e. to stand in the meridional external flow a jet can't be exactly zonal but must be tilted. Our analysis shows that, indeed, regardless of their origin all jets are oriented northeast-southwest, if in the southward flow, and northwest-southeast, if in the northward flow.

othed zonal velocities in numerical or

Question

While analogy between zonally oriented jet-like structures recently discovered in satellite altimetry data (Fig.1), outputs of high-resolution ocean general circulation models (e.g., Fig.2), and long-known banded cloud structures in atmospheres of giant planets (Fig.3) is tempting, there are significant differences between the systems that may have serious dynamical consequences.

Most importantly, the Earth is not an "aqua-planet". Existence of continents breaks zonal symmetry both in atmospheric winds and in oceanic currents. On a large scale, World Ocean circulation, except for its very southern, Antarctic part, is comprised of a set of strong wind-driven gyres. These gyres move large masses of waters in meridional directions to compensate the production of vorticity by the local wind stress at the sea surface. These gyres are best seen in the mean dynamic topography (Fig.4).

Question: Can a zonal jet be stationary in the presence of sensible meridional flow'

Data

We are using 10-year mean sea surface dynamic topography [Maximenko and Niiler, 2005] calculated by a joint analysis of drifter, satellite altimetry, wind and GRACE data. Description and data are public at

http://apdrc.soest.hawaii.edu/projects/DOT. Meridional component of geostrophic velocity calculated from this data is shown in Fig.5 and it's small-scale component is in Fig.6.

Jets

Fig.6 reveals both well-known jets (such as frontal jets, Hawaiian Lee Countercurrent and Azores Current) and recently reported new jets in the eastern parts of all oceans. Orientation of jets is not exactly zonal and tilt is coherent with the sign of meridional geostrophic flow (Fig.7)

Answer: Yes, it can. To survive the effect of background meridional flow, "zonal" jet has to tilt meridionally to allow meridional phase propagation of Rossby waves against the oncoming flow. This agrees with what we observe in our ocean data. ee Fias. 6-8.

ons. Colors are same as in Fig.6 and conto

Interpretation

 $\omega = -\beta k/(|\mathbf{k}|^2 + L_D^{-2})$ **k** = (k, I)

Meridional component of phase speed: $V_{rossby} = \omega |/|\mathbf{k}|^2 \sim \sin \alpha$

where $\boldsymbol{\alpha}$ is the angle of tilt of the jet. By choosing proper angle, the jet can withstand the effect of meridional flow.

Interestingly, this applies to zonal jets regardless of their origin: HLCC is induced by the wind interacting with Hawaiian islands; Azores current is believed to be induced by Mediterranean outflow through Gibraltar; source of the "eastern" iets is not understood vet.

For a linear Rossby wave:

REFERENCES

aki 2005 Ober zonal jets in the World Oc nhve Res Lett 32 L12607 cer.0004LU2773 Cer.0004LU2773 The biguidous zonal jets in the atmospheres of giant planets and Earth's oceans, Res. Lett., 31, L1330, doi:10.1022/0046L01981. Res. Lett., 31, L1330, doi:10.1022/0046L01981.

^{102/(2009).} of zonal jets embedded in the broad zonal flow in the reason community of zonal jets embedded in the broad zonal flow in the reason community of zonal zona ceanogr., F.O. Brya