

Sciences de

Institut

outputs

inputs

Arnaud QUESNEY, Eric JEANSOU, Christian RUIZ

NOVELTIS, 2 avenue de l'Europe, Ramonville-St-Agne, France

Nathalie STEUNOU, Bruno CUGNY, Nicolas PICOT, Jean-Claude SOUYRIS

CNES, 18 avenue Edouard Belin, Toulouse, France

Sylvie THIRIA, Mustapha LEBBAH

LOCEAN/IPSL, 4 place Jussieu, Paris, France

Summary

cnes

We have developed a method for the automatic identification of the surface type from a sample of altimetric waveforms. It is a preliminary stage to the treatment of the waveforms specific to each surface type which provides an adequate algorithm able to extract relevant geophysical information.

NOVELTIS has implemented a waveform unsupervised classification scheme using a neuronal approach founded on the self-organizing topological maps (Kohonen approach). The interest of such a method is that it is fast, powerful and that it makes it possible to process information mixing quantitative and qualitative data.

The performances of the classifier are performed through a comparison with expert fields produced by CNES. The results have shown that the classes are labeled with more than 88% success for the Ocean, Land Surface, Sea Ice and Coasts types.

We have applied the learned classifier to a Jason-1 cycle. The results obtained have underlined the robustness of the neuronal waveform classification. The interpreted classes present good space-time coherence. Sea ice space covers can, for example, be clearly delimited. A first validation of the sea ice extension has been carried out using the products deduced from SSM/I data. Lastly, we have shown that neuronal classification made it possible to very finely identify the continental ice surface type.

Methodology

We have applied an automatical classification of altimetric

waveforms using a **neuronal approach** founded on the **self-organizing topological maps** (**Kohonen** approach). These maps belong to a family model with "unsupervised learning process" that lead to the gathering of similar data.

The **unsupervised classification** method used in this study is dedicated to quantitative and qualitative data. The input vector is composed of **Jason-1 waveforms measured in Ku and C-band associated to 2 qualitative flags** representing a sea-land mask (available in SGDR products). A learning base and test base have been created with these input vectors. The **objective** was the classification of the following principal surfaces:

Ocean (« Brown »),

- Ocean with rain disturbance (rainy cell),
- Specular ocean (Sigma0 Bloom),
- Sea ice,
- Coastal zones (radar echoes are disturbed by land),

Implementation

NOVELTIS has optimized the whole classification process (input vectors, topological map, learning process). The classification step has been achieved on the learning base data with the **MTM tool (Mixed Topological Map)** from LOCEAN/IPSL. The implemented method has been fast and efficient. In order to validate and to obtain the classifier performance, we have validated the classifier on the test base data using **expert fields** provided by CNES.

In these models, the classification result is presented as a graph called « **topological map** » where resembling categories (classes of altimetric waveform shapes) are close spatially.

The results have shown that the **classes are labeled with** more than 93% **success** for the ocean, 100% for land surfaces, 88% for sea ice and 100% for coasts types.

-						
	Expert field:	Land	Ocean	Sea ice	Coastal zone	
	Land	100.00%	0.00%	0.00%	0.00%	
	Ocean	3.17%	93.06%	0.02%	0.00%	
	Sea ice	2.68%	8.74%	88.58%	0.00%	

Data Altimetric Waveforms						
MTM Tool						
Expert fields						
Interpr	eted topological map					

0.00% 0.00% **100.00%**

Results

We have applied the learned classifier to the **Jason-1 cycle 116** (from 1 to 10th March 2005). This is the global result of the altimetric waveform classification.

The interpreted classes have a **great spatial and temporal coherence.** The result obtained have underlined the **robustness of the neuronal waveform classification to noise measurement.**

Intra-class variability: to an estimation of geophysical parameters

lce

NOVELTIS has analyzed the space-time variability of classes that belong to a same type of identified surface.

For example, continental waters are clearly detected among land surfaces.

The **Ob river** in Russia is really **well detected** on the Jason-1 tracks that fly over it.

The ice covers have regular spatial variations that correspond to specific waveform characteristics. On the figure following, the **green zones** represent **specular surfaces** while **blue zones** have **waveform less specular**, meaning they are influenced by **roughness contribution**. This result has been **validated** using the products deduced from **SSM/I** data (right figure). Results of classification on land surfaces are very interesting and new. The analysis of close waveforms labeled « land » has underlined **areas** that are **spatially extended**. This result is promising for the altimetric waveforms interpretation in terms of geophysical parameters. In fact, on land, altimetric waveforms could give **information about surface characteristics**. Comparison of classification of "land" waveforms and a DEM (median slope from GTOPO30) shows a high correlation in spatial structures (b-a).

Moreover, **information about volume contributions** can also be achieved. Blue zones correspond to plane areas without vegetal cover and green zones clearly represent relief or vegetal zones as it is visible on the sub-sahel band (b-c).

The spatial cover of **sea ice** can be **well demarcated** in the Hudson Bay and in Antarctic peninsula.

Automatic detection of altimetric waveforms representing ocean, coast, sea ice and land surface types ⇒ Offers the possibility of applying an appropriate process for geophysical parameters estimation related to the altimetric waveform shape.

Moreover, the **continental ice** can also be **automatically detected** by classification, as shown on Iceland, and could be useful to **deduce continental ice height**.

