Improving Jason-2 σ^0 values

(& the implications for rain-flagging)

Graham Quartly

National Oceanography Centre, Southampton

1) MLE-4 cross-talk

2) Improvements to *i*) Wind profiles *ii*) J1-J2 comparisons *iii*) Rain-flagging

Rain-flagging: A reprise

Historical example using TOPEX data Std. Dev. (dB) -3.0 sigmaC (dB) -3.5 -4.0 -4.5 sigmaKu 5.0 -5.5 10 15 20 25 30 sigmaC (dB)

1

Well-defined relationship

(wind increases roughness at both scales to similar extent)

Small scatter

Points significantly below curve are associated with rain

Red crosses indicate 'rain' according to LWP

MLE-4 : Switch to AGC?

For Jason-2 & reprocessed Jason-1, use of MLE-4 => greater along track changes in σ^0

- 1) Not a physical measure
- 2) Predictive (depends on tracker)
- 3) We can do a lot better!

Correlated effect

> Analyse in short segments

>> Analyse separately each second of data

Microscale correlation

Nearly constant value for pass of data encompassing a wide range of environmental conditions

- A Split gate tracker
- **B** Diode median
- **C Diode-DEM** coupled mode

& C-band?

Technique can be applied, noting:

- i) Regress σ^0_C against ψ^2 from Ku-band
- ii) Expect smaller response, (beamwidth different)

Effect 1 : Smoother wind profiles

Effect 2 : Better Ku-C correlation

Effect 2 : Better Ku-C correlation

Mean relationship shows a clear wave height dependency

Effect of wave height quite clear at low wind speed; effect not so apparent with original sigma0 values.

Effect 3 : Improved intercalibration

Adjustment reduces scatter between J-2 and J-1 observations of σ_{Ku}^0 ; and also gives a mean offset that is not $f(\sigma_{Ku}^0)$.

Conclusions

Within 1 Hz ensembles, correlated errors in ψ^2 and σ^0 Not new! — see Challenor & Srokosz (1989) More meaningful to look at σ^0 for $\psi^2=0$ Correlation coefficient near constant ($\alpha_{K_{II}}$ =11.34, α_{C} =2.01) **Property of waveform tracker used** Simple adjustment improves i) wind speed profiles ii) J1-J2 matchups iii) Rain-flagging

Additional - 1

1

Geographical comparison of differences in σ^0_{Ku} (Jason-2 - Jason-1)

Maps comparing original σ_{Ku}^0 show wind bands; adjusted version removes this problem but shows large-scale patterns of Jason-1 mispointing

The Three Trackers

- On-board acquisition trackers
- 1) Split-gate (as Jason-1)
- 2) Diode median
- 3) Diode-DEM coupled mode

Effects:

- a) Positioning of waveform
- b) Amount of AGC movement
- c) Slight change in ψ^2 - σ^0 correlation

