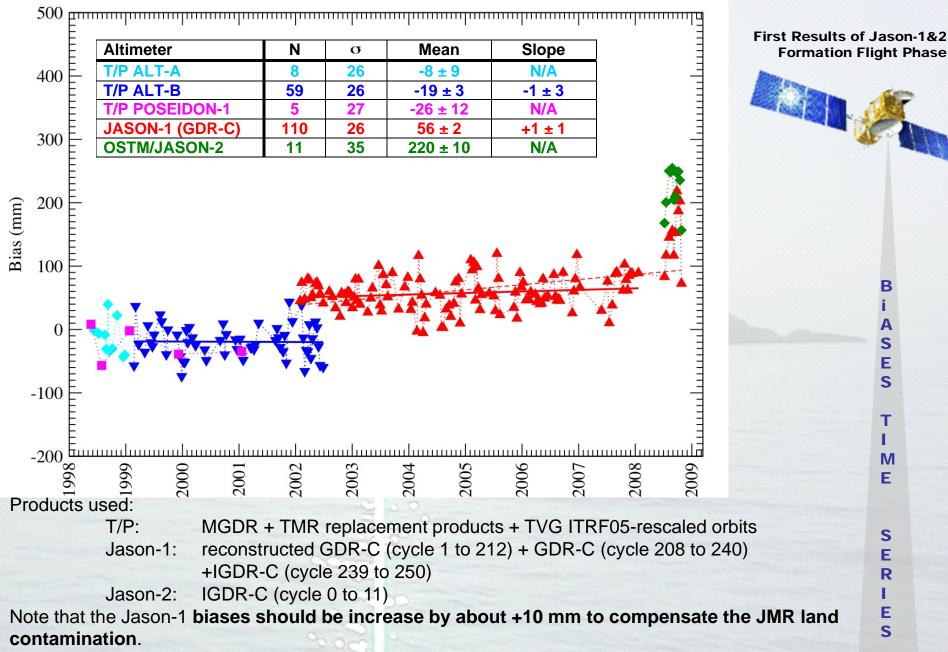
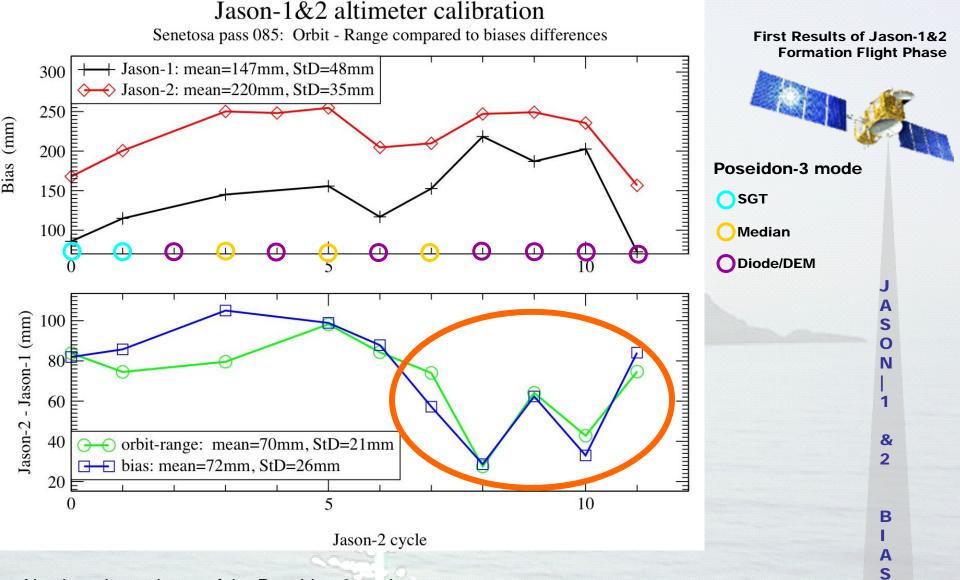
Absolute Calibration of TOPEX/Poseidon, Jason-1 and Jason-2 Altimeters in Corsica First results of Jason-1 and Jason-2 Formation Flight Phase

P. Bonnefond⁽¹⁾, P. Exertier⁽¹⁾, O. Laurain⁽¹⁾, F. Pierron⁽¹⁾, Y. Ménard⁽²⁾, F. Lyard⁽³⁾, S. Calmant⁽³⁾, J.-F. Crétaux⁽³⁾, L. Testut⁽³⁾, E. Burrillon⁽⁴⁾, G. Jan⁽⁴⁾ and V. Ballu⁽⁵⁾ ⁽¹⁾OCA/GeoSciences Azur, Grasse, France


⁽²⁾CNES, Toulouse, France
⁽³⁾LEGOS, Toulouse, France
⁽⁴⁾NOVELTIS, Ramonville, France
⁽⁵⁾ IPGP, Paris France

OSTST Meeting Nice, 10-12 November 2008



The absolute calibration site in Corsica is based on a double configuration: First Results of Jason-1&2 **Formation Flight Phase** A geodetic site at Ajaccio: FTLRS has been settled in 2002 and 2005. FTLRS is in Corsica since July 11th to december 2008 An in-situ site at Senetosa cape under the track N°85 The Senetosa site allows to perform altimeter calibration from tide gauges as well as from a GPS buoy. Tide gauge calls С Altimeter 0 Senetosa/Capraia Calibration Site R S Italy France Control С Α Tide gauge) **GPS** 41' 407 **Products used for the study:** Jason-1: IGDR-C, GDR-C 41° 35'N Jason-2: IGDR-C T/P: MGDR+ (TMR & orbit) 41° 30'N 8' 45'E 8' 50'E 50 100 Definition of altimeter bias calibration: Permanent LASER, permanent DORIS (project), permanent GPS Mobile LASER, DORIS Localization, permanent GPS ▼ Permanent Tide Gauge | ▽ Tide Gauge (project) TOPEX/Poseidon Jason ERS, ENVISA sea height bias = altimeter sea height - in situ sea height

Sea height bias < 0 meaning the altimetric sea height being too low (or the altimeter measuring too long) Sea height bias > 0 meaning the altimetric sea height being too high (or the altimeter measuring too short)

For the sudden increase of Jason-1 bias (affecting probably also Jason-2) during summer 2008 we have for the moment no explanation. See poster for details.

No clear dependence of the Poseidon-3 modes

Orbit minus range lower than global analysis: larger orbit errors on <u>MOE</u> for cycle 8 and probably 10 => **Orbit minus range closer to global analysis when using POE**

Very good agreement of bias differences and Orbit-Range: 2 mm (correction impact)

Ε

S

First Results of Jason-1&2 Formation Flight Phase

Jason-2 Š Jason-1 (corrections):

Correction	Mean (mm)	Standard Deviation (mm)
Dry Tropo.	-0.4	2.6
Wet Tropo. (radiometer)	-9.8	7.6
Wet Tropo. (ECMWF)	0.2	0.6
AMR - ECMWF	21.8	17.7
JMR - ECMWF	31.6	15.0
AMR Š GPS	-0.5	13.2
JMR - GPS	+9.3	11.9
Iono. (dual frequency)	+11.6	6.4
Iono. (GIM)	0.0	0.0
JS2 - GIM	-2.4	15.2
JS1 - GIM	-14.0	16.9
SSB	-3.6	4.6
Solid Tides	+0.2	0.8
Loading	0.0	0.0
Pole Tide	0.0	0.0
Total	-2.0	

2

C O R R E

C T

ь

O N

S

Main contribution comes from <u>Wet tropospheric (</u>~-10 mm) and <u>lonopheric (</u>~+12 mm) corrections

Other environmental parameters:

- SWH: Mean = +7 cm StD = 12 cm
- Wind Speed: Mean = +0.5 m/s StD = 0.6 m/s

SSB differences probably mainly come from SWH differences

5

Calibration from Corsica

Absolute bias 10 four common overflights:

Jason-2: +220 mm (207 from Harvest)

Jason-1: +147 mm (110 from Harvest)

The very high values of the bias need to be investigated because it is very different from the whole Jason-1 time series (see poster for details).

=> Can't trust absolute values for this period

Relative bias from 10 common overflights:

Jason-2 - Jason-1: +72 mm (97 from Harvest) (70 mm from orbit-range) Difference with global analysis (84 mm) comes from MOE orbit errors on some cycle POE reconciles results: ~80 mm for orbit-range (84 mm from global analysis).

Corrections:

Wet tropo. from radiometers show a bias of -10 mm (AMR-JMR) and GPS confirms that it comes from JMR (dryer). However no drift detected from JMR/GPS comparisons.
Dual lonospheric corrections exhibit a bias of +12 mm (Jason-2 - Jason-1). Compared to GIM the biases are respectively -2 mm and -14 mm for Jason-2 and Jason-1

Transition from GDR-B to GDR-C:

Large impact of SSB (-30 mm); JMR, POE and range corrections account for few mm

T/P MGDR+:

10 mm decrease of the T/P ALT-B bias compared to MGDR (-3 mm from TMR and -7 mm from orbit) Jason-1 (GDR-C) - T/P (ALT-B, MGDR+): +85 mm (11 common overfights)

(78 from Harvest)

Using retracked products increases T/P ALT-B bias by 13 mm

First Results of Jason-1&2

Formation Flight Phase