Jason-1 orbit change

Proposed scenario

- Stay on flight formation configuration until the end of cycle 20 (i.e. January 26th, 2009)
- From this date, move Jason-1 to interleaved orbit as soon as possible, depending on project constraints (e.g. operational orbitography center availability)
- Start moving Jason-1 no later than mid-February
- Orbit phasing: 5 days (162°)

Option 162° (aka 5-day option)

Offline use of altimetry (data from the future can be used) \rightarrow Lag with the future and in the past

NRT use of altimetry (data from the future cannot be used, T0=End of cycle N) → Lag with the past only

Option 162° (a.k.a 5-day option)

Mesoscale

12 days

1000km / 1day

« Push-away » scanning pattern associated to the 5-day lag (each new track seems to push the neighbour away)

Sampling is visually not as regular as the 4-day option for signals with dt>10days

Dark areas are not coherent: split evenly in 2 days (tandem better than TP/JA1)

Sampling of both satellites is evenly distributed (1500km in 1 day, 750 in 2 days, 500km in 3 days)

Minimal blind spots until a full sub-cycle is complete

Instantaneous observing capability

(best correlation between snapshots grid points and along-track data from the past)

- Important to detect drifts in measurement early
- Need more than a year of data at an absolute calibration site (or tide gauges) to detect drift of 1 mm/year or smaller
- Need only 20 cycles of cal/val phase to reach similar precision

n With 4 months, can only detected of > 2 mm/year