

# GPS zero-difference integer ambiguity fixing for Jason

D. Laurichesse, F. Mercier, J.P. Berthias, P. Broca, L. Cerri *CNES, Toulouse, France* 

OSTST Meeting, Nov. 10-12, 2008 - Nice



## History

- Integer ambiguity fixing brought noticeable improvement to IGS orbits both in precision and in stability
- Whether or not integer ambiguity fixing improves precision and centering of LEO orbits has been the subject of debates over the last ten years
- JPL Jason-1 research proposal on this issue in 2001 (M. Watkins)
  - Y. Yoon Ph.D. work (U. Colorado, S. Nerem thesis director)
  - standard double difference integer ambiguity fixing
  - insufficient orbit precision and lack of good antenna correction map limited ambiguity fixing capability
- New technique for zero-difference ambiguity fixing on a global network (F. Mercier, D. Laurichesse, 2007)



## Key concept





## Key concept





## **Processing concept**

#### Double differencing phase equations cancels biases

- this is the standard approach for integer ambiguity fixing
- used to produce IGS orbits

#### **GPS** satellites clocks are lost in the double differencing scheme

- IGS clocks are produced outside of the ambiguity fixing process, they contain biases
- clocks are essential for LEO zero-difference POD
- Mercier-Laurichesse approach based on clever isolation and identification of biases
  - produces GPS clocks consistent with integer phase ambiguities and emitter biases
  - well suited for LEO POD



## **Basics of Mercier-Laurichesse approach**

#### ■ First step

- uses ionosphere-free geometry-free Melbourne-Wübbena widelane
- identify emitter biases (relatively stable)
- fix widelane ambiguity  $N_w = N_1 N_2$  for each receiver

#### Second step

- once N<sub>w</sub> is known, ionosphere-free phase equation reduces to a single frequency problem with ambiguity N<sub>1</sub> and wavelength 10.7 cm
- solve this problem globally for a world-wide network of stations keeping the geometry fixed

#### Can be applied with IGS orbits to recover ambiguities, biases and associated clocks



- Same approach work with LEO data once GPS biases and clocks are known
- First step is M-W ambiguity fixing
- Once GPS biases are corrected Nw ambiguities clearly appear





- Second step is N1 ambiguity fixing using ionosphere-free equation
  - however, starting Jason-1 orbits are not good enough to be able to reveal ambiguities
- Orbit error in error in along- and cross-track needs to be reduced
  - apply empirical short-arc orbit corrections in along- and cross-track directions (5 min long arcs)
  - time-correlated corrections
- Integer fixing solution computed 1 day at a time solves for
  - one integer ambiguity per pass (about 400 passes).
  - one along- and cross-track corrections per short-arc (2\*288).
  - one stochastic clock at each epoch (2880 values).
- Integer ambiguities obtained by bootstrap method





Ambiguity fixing rate is high



- Ambiguities are fixed at their integer values and a standard POD solution is computed
  - final orbit solution is a reduced dynamics solution, not an empirically patched orbit
- A floating ambiguity solution is also produced at that step for comparison purposes
- Orbit quality is evaluated using standard tests



## Orbit quality check using altimeter data

- RMS altimeter range cross-over residuals
- Values relative to the ambiguity-fixed orbit



Difference of Xovers RMS per cycle wrt to integer orbit



## Orbit quality check using SLR data



Difference of daily RMS wrt to integer orbit



## **Orbit quality check using SLR data**



SLR residuals on core network



## Jason-2

- The widelane ambiguity fixing (first step) works well on Jason-2
- N1 residuals appear similar to those of Jason-1 before orbit correction
- However, N1 ambiguity fixing does not work
  - might be related to half cycle jumps (see poster by F.Mercier)

Histogram of N1 residuals (JASON2, initial orbit)





## Conclusion

- The zero-difference integer ambiguity fixing method works well for Jason-1 (it has also been successfully tested on GRACE)
- Ambiguity fixing appears to improve orbit precision
  - independent orbit quality checks based on SLR data and altimeter crossover residuals show that ambiguity fixed orbits are slightly but consistently more precise compared to state of the art solutions
- For some unknown reason the process does not work with Jason-2
  - probably a problem at receiver level
  - needs to be investigated and corrected
- The full potential of ambiguity fixing for LEOs remains to be explored
  - It should be possible to make further progress in orbit precision and thus in force modeling