

Jason-1 Orbit change preparation

CNES

OSTST meeting - Nice

1

Presented by G. Zaouche - CNES

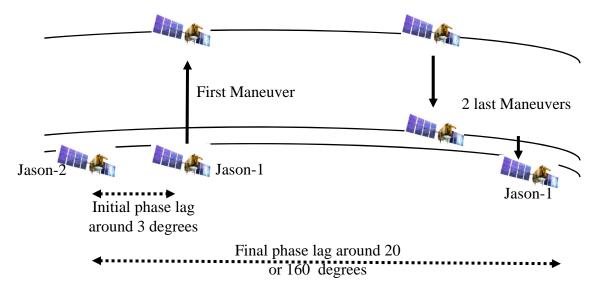
- Jason-2 In-Flight assessment meeting : Sept 11, 2008
 - Satellite and Ground System nominal Verification phase in progress
- CALVAL meeting : Sept 12, 2008
 - discussions about the CALVAL phase duration
 - discussions about the phasing between Jason-1 and Jason-2 orbits
 - recall about the T/P and Jason-1 phasing : 18°
 - introduction of a new phasing for discussion : 162°
- Further discussions and decision since then have been done on the OSTST email list (see presentation from N. Picot) and some will also be done in the current OSTST meeting
- At project level, action item to evaluate "what can be made" in term of :
 - capability of the navigation system
 - duration of the transition phase
 - readiness of the Jason-1 ground system : maneuvers, products, ...
 - needed resources

whatever the OSTST decision can be

- Orbit phasing interleave orbit : 2 cases have been evaluated to date
 - a shift at the interleaved at the closest position from Jason-2 (\pm 18 degrees)
 - a shift at the interleaved at the furthest position from Jason-2 (± 162 degrees)

General principle

- in order to move Jason-1 at the interleaved, it is then necessary to modify its inorbit position. This is done with several semi-major axis maneuvers.
- general constraints on the maneuvers due to satellite and operations are :
 - Maximum amplitude of each boost of 2.5 m/s
 - In order to perform maneuvers with a good accuracy, it is necessary to have a waiting period of at least 2 days between them. This constraint may be relaxed if the needed precision for the maneuver is low.
 - Moreover, in order to minimize the dispersion on the last maneuver (that enable to position Jason-1 at its final operational position), it is preferable to have a low amplitude for this last RV maneuver.



• Jason-1 Station acquisition :

- if the targeted phase-lag is ± 18 degrees, then the RV will be performed with 3 semi-major axis maneuvers (one to raise or lower Jason-1 altitude depending on the sense of the drift, and two to come back on the operational orbit at the targeted position, the last one being of low amplitude (at most 1 km))
- if the targeted phase-lag is ± 162 degrees, then the RV will be performed with 3 or 5 semi-major axis maneuvers depending on the maximal expected duration for the operations

- Several cases have been studied with different Da maneuvers (2 examples are given below) :
 - case 18° with Da of 4 km

Da Man 1	Day Man 1	DV man 1	Da Man 2	Day Man 2	DV man 2	Da Man 3	Day Man 3	DV man 3	Total Duration	Total Consumption	
4 km	1	1.84 m /s	3 km	5	1. 36 m/s	1 km	8	0.46 m/s	8 days	3.66 m /s	

case 162° with Da of 20 km

Da 1	Day 1	DV 1	Da 2	Day 2	DV 2	Da 3	Day 3	DV 3	Da 4	Day 4	DV 4	Da 5	Day 5	DV 5	Total Dur.	Total Cons.
10 k m	1	4.66 m/s	10 k m	2	4.66 m/s	10 km	9	4.66 m/s	9 k m	11	4.2 m/s	1 km	13	0.46 m/s	13 days	18.64 m/s

• Orbit change synthesis

- Depending on the targeted phase lag and maximum wanted duration for the operations, the global duration of the station acquisition goes from 8 to 21 days, with a global cost from 3.66 m/s to 18.64 m/s (4% to 20% of current hydrazine mass)
- The RV maneuvers are performed with 4 thrusters. If needed, eccentricity may be corrected with these maneuvers (dispersions on the different RV maneuvers)

- Satellite :
 - 4 thrusters are OK usual constraints for maneuvers
- Instruments :
 - DORIS, AMR and GPSP : no constraints
 - Poseidon2 constraints for large Da maneuvers
 - POS2 will be put in WAIT mode
 - new "PRI" (altimeter repetition frequency) value to be uploaded when satellite altitude change > ± 1 km
 - POS2 in WAIT mode when Jason-1 nadir is above Jason-2
- Mission centers :
 - impact about products in transition phase : evaluation in progress (but products will not be disseminated to the users)
- Station keeping maneuvers :
 - planned, as for Jason-2, in one thrust over earth (no more orbit 127)
 - eccentricity will be checked
- Operations :
 - tests resources in operational conditions with the satellite simulator : about 2 weeks
 - orbit change duration : from 8 to 21 days
 - human resources needed for the whole period : evaluation in progress
 - Need of a formal OSTST decision to guarantee the change date

• No showstopper at Jason-1 system level

• Earliest decision from OSTST needed to organize operations

Don't forget that in less than ONE month (Dec 7, 2008) Happy Birthday ... old ... Jason-1 !!!!!!

