

Impact of long-term gravity field variations on Jason-1 and Jason-2 GDR orbits

L. Cerri¹, S. Houry¹, F. Mercier¹ ¹*CNES, Toulouse, France*

Precision Orbit Determination and Geoid session OSTST Meeting, June 22-24 2009 – Seattle

Ccnes

Introduction

Conclusions from last meeting (Nice '08):

- Geographically correlated error from the static part of the gravity field is now below 1 mm
- Below 1 cm, the gravity field cannot considered to be static
- Current standards include drifts for the zonal terms up to degree 4, annual and semiannual variations from the EIGEN-GL04S-ANNUAL field
- What is the impact of long term variations of the gravity field on GDR orbits?
 - Compare GDR-C orbit with one obtained using a GRACE-derived time series of gravity fields

cnes

Introduction

From last meeting (Nice '08): impact of the drifts included in EIGEN-GL04S-ANNUAL

Orbit difference Radial RMS per cycle

■ CNES-GRGS GRACE-derived 10-day gravity fields (Release 02) now available, tested over Jason1 series 22→251 and Jason2 001→012

cnes

Orbit difference deg. 3/ord. 1 harmonic

- Noticeable correlation between variations of the 31 harmonic and the radial orbit difference
 - Stronger effect with D+L configuration (1/rev every 24 hr)

OSTST – POD&Geoid Splinter – Seattle, June 22-24, 2009

Ccnes

deg. 3/ord. 1 harmonic

- 10-day fields are noisier, each individual solution doesn't necessarily represent the best available gravity model
- Long term behavior is consistent between different series of GRACE fields, and not modeled in current POE standards

Orbit difference – Radial mean over oceans

Trend of mean radial difference over ocean below 0.05 mm/yr

Ccnes

Orbit difference – Radial mean over oceans

significant mean differences exist on smaller scale

Orbit difference – Geographically correlated difference

OSTST – POD&Geoid Splinter – Seattle, June 22-24, 2009

Orbit difference – Geographically correlated difference

GC_10d_r02 - Eigen4An

Lower impact of errors in the gravity field on Jason-2 POE (higher number of 1/rev allowed by GPS)

Closer to Jason-2 reduced dynamic orbits (JPL09a)

Performance – Post-Fit SLR Residuals

Performance – Crossover Residuals

Small but noticeable improvement in RMS and Mean of crossover residuals

Xover RMS GC_10d_r02 - Eigen4An

cnes

Conclusions

- The omission of long term variations of gravity field in the current standards leads to ~1.5 mm/yr differences on a basin scale, and to less then 0.1 mm/yr differences over the whole ocean
- These variations are non-linear, and the yearly average of geographically correlated difference reaches peaks of 6 mm (2007)
- The impact on the orbit can be attenuated by
 - Improving current models?
 - Improving the orbit parameterization
 - Optimize management of 1/rev empiricals
 - Reduced dynamic orbits
 - Differences are strongly correlated with deg.3/ord.1 harmonic: try solving for C31/S31?