

POSEIDON3 Instrument Investigations Corrections and Upgrades

OSTST meeting – Seattle June 2009

Jean-Damien DESJONQUERES (CNES)

Contents

POSEIDON3 Status

Range Bias

Secondary Signal Tracking Anomaly Correction

DEM (MNT) /Diode Coupling Mode Basics & Upgrades

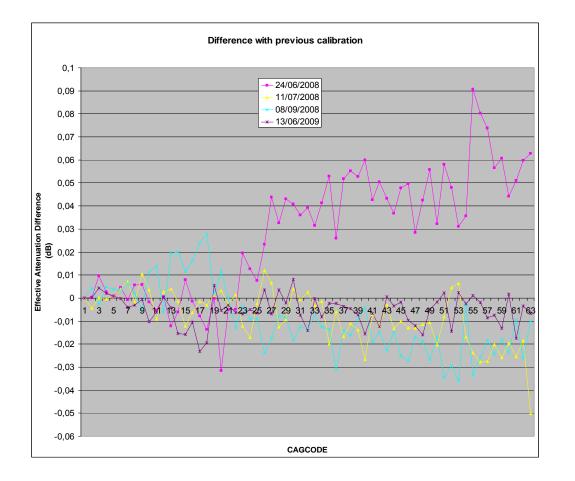
- Onboard Software
- Onboard DEM File

Conclusion

POSEIDON3 Status 1/3

Functional Status: OK

- Working 100% of time, No unavailability (excepted for software and DEM upload)
 - No relnit
 - No Alarm


In Flight Estimated Performance is coherent with Ground Measured Performance (1 Hz Range Noise ~1.5cm).

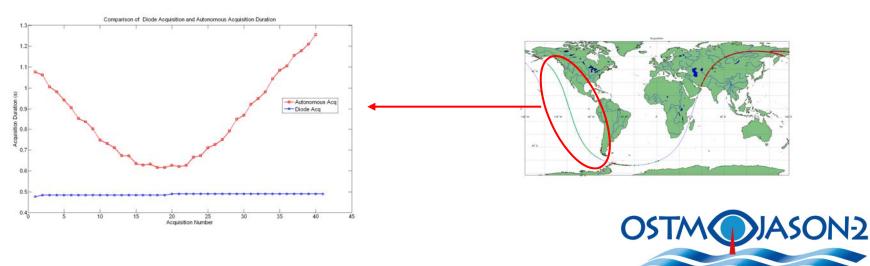
Good In-Flight Stability

POSEIDON3 Status 2/3

Gain Control Calibration

Low differences since Launch

Effective Gain Control stabilized in +/- 0.01dB range (for typical CAG)



POSEIDON3 Status 3/3

Current Operational Mode:

Diode Acquisition & Autonomous Tracking with Median Algorithm

- Median:
 - Good Results over oceans for Brown and non Brown Echoes
 - Good Results over coastal zones and land surfaces
- Diode Acquisition:
 - Acquisition Time limited to 0.5s ->increase the data availability

Bias Investigation

Differences between Poseidon2 and Poseidon3 range measurement

2 major origins

Truncate PRF is used in ground segment

Difference in the characterization parameter set (from ground measurement

- For POSEIDON2, 2 sets of parameters have been restored (unfortunately without the corresponding procedure)
 - One is very close from Poseidon3 parameters
 - The other has been used for JASON1 characterization!

Bias Investigation 2/4

Parameter	JASON1	JASON2	JASON1/JASON2 Difference
Altimeter PRF	2059,679205 Hz	2058,513239 Hz	
PRF used in ground processing	2059,6792 Hz	2058,5132 Hz	
PRF truncate effect	-0,316 cm	-2,471 cm	-2,156 cm
Alti correction for Ku band (from measurement)	4,151466 m	4,268487142 m	11,70211423cm
Total difference for Ku band	9.5 cm		

Ground Parameters Differences

Bias Investigation 3/4

Results

Parameter	JASON1/JASON2 Difference	
CalVal Estimated Difference for Ku Band	8.3 cm	
Total Parameters Difference for Ku band	9.5 cm	
Remaining Difference in Ku Band	1.2 cm	

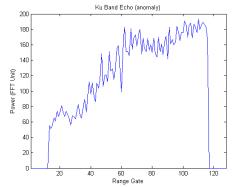
Bias Investigation 4/4

Conclusion

Poseidon2 and Poseidon3 are very close in term of hardware, the difference of range between JASON1 and JASON2 is artificial and explained.

->The difference in Ku band for the Raw measurement is ~1cm

Investigations are still in progress to explain the difference between Jason1/2 and Topex



Secondary Signal Tracking Anomaly Correction 1/3

Observation

Tracking of low signal echoes with « Brown like » but « distorted » shape.

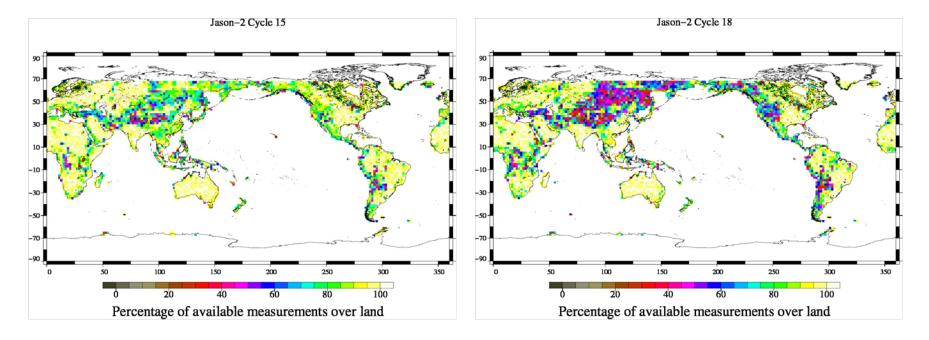
Analysis

• Detection Threshold to Sensitive, Makes Possible the Acquisition on Attenuated Replica of the Echo

Secondary Signal Tracking Anomaly Correction 2/3

Correction

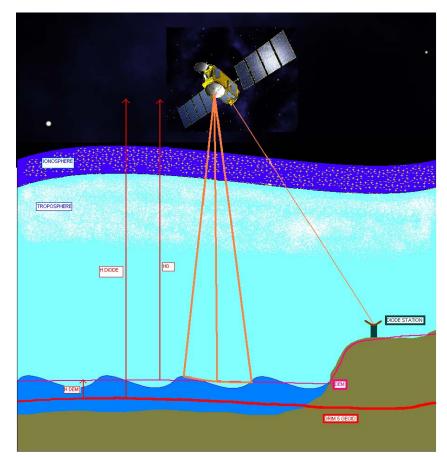
Modification of Poseidon Onboard Parameters


Correction effects

- Over land:
 - slight decrease of the percentage of available measurements over low SigmaO surface
- Over Ocean:
 - The anomaly has not been detected since the modification
 - Acquisition Success over Ocean Surfaces: 100%

Secondary Signal Tracking Anomaly Correction 3/3

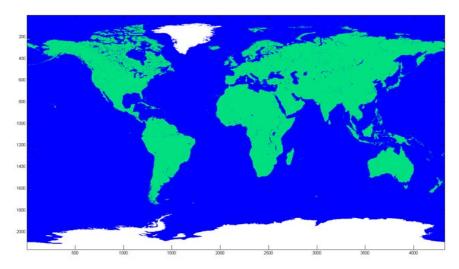
Courtesy CLS



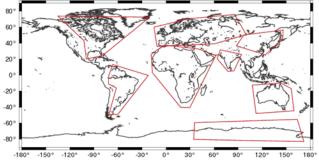
Diode/DEM Coupling Mode Basics 1/2

Diode->Satellite Altitude

Onboard DEM: Ground elevation



Cnes

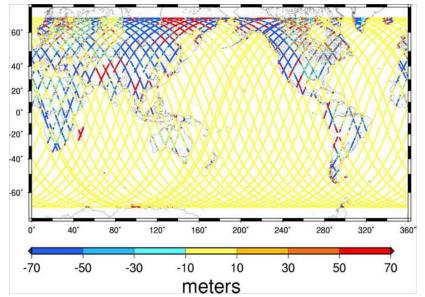

Diode/DEM Coupling Mode Basics 2/2

No restriction for Water Surfaces (priority) included Inland Water (every blue point in the GMT Mask)

Land surfaces can not be all included in the DEM->land selection

GMT MASK

Land Selection

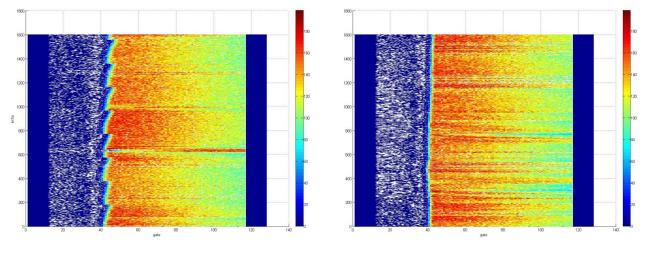


Diode/DEM Coupling Mode Upgrades 1/2

■ New version of the On board DEM.

- The LEGOS Database has been completed with data from JASON2 in autonomous mode
 - for Inland Surface, the Diode/DEM Mode takes advantage of Median Mode

No Modification for Ocean and Coastal Areas



¢ cnes

Diode/DEM Coupling Mode Upgrades 2/2

- Onboard Software upgrade:
 - Modification of the Onboard software to increase the stability of the echo in the reception window
 - Second order extrapolation of the altitude from Diode

Before Correction After Correction

Conclusion

Altimeter performances are very good.

Diode/DEM and Median Modes are now equivalent over Oceans

- No anomaly of acquisition in Median Mode
- No jitter of the Echo Position in Diode/DEM Mode

New DEM is still in investigation (for Inland Water)

-> Decision for the operational mode

POSEIDON2 and POSEIDON3 give the same raw range with 1cm error

Investigations are still in progress for JASON1/2 wrt Topex

