

Introduction

General

- OSTM/Jason-2 successfully launched on 20th of June 2008
- In formation flying with Jason-1 (55 seconds apart) during cycles 0 to 20 from 4th of July 2008 to 26th of January 2009 (till Jason-1 was moved to its new interleaved orbit)
- Objective:
 - Assess Jason-2 data quality and system performances
- Method:
 - Analysis of missing and edited measurements
 - Using cross-calibration of Jason-2 with Jason-1 to
 - Analyze parameters
 - Assess SLA performances and consistency
- Used Data:
 - 1 Hz Jason-2 and Jason-1 data (IGDR and GDR)
 - Jason-2 cycles 1 to 20 (Jason-1 cycles 240 to 259)
 - Jason-2 cycles 3, 5 and 7 were operated in DEM mode

Introduction

• Main differences between IGDR and GDR:

	IGDR	GDR	Impact
Orbit	MOE (Medium Orbit Ephemeris)	POE (Precise Orbit Ephemeris)	orbit
DAC (Dynamical Atmospheric Correction)	Uses non- centered window for filtering	Uses centered window for filtering	DAC
Radiometer wet troposphere correction	New AMR characterization file since cycle 023	Use of ARCS -> calibration coefficients for each cycle	Brightness temperatures, radiometer wet troposphere, atmospheric attenuation
Poseidon-3 AGC tables	New Poseidon-3 characterization file since cycle 023	Same Poseidon-3 characterization file for entire period	Backscattering coefficient, altimeter wind speed

Missing and edited data

- Missing measurements (GDR products)
 - Only few missing measurements over ocean, mostly due to:
 - Acquisition station problems
 - Over coastal and hydrological zones, and also sea ice, Jason-2 performs better than Jason-1, thanks to new tracker algorithms

Performances

System

Missing and edited data

- Edited measurements (GDR products)
 - Over open ocean: same editing criteria used for JA1 and JA2
 - Percentage of edited measurements similar for both satellites (approx. 16% of edited measurements over ocean, mostly sea ice)
 - In Median mode till cycle 016 (upload of correction), small portions might be edited due to low signal tracking anomaly (AGC, mispointing, SWH out of threshold)
 - During cycle 019, approx. 2 days without AMR -> radiometer wet troposphere correction at default value

Performances

System

Parameter Analysis

- Monitoring of altimetric parameters is very important to verify stability of measurements
- Tools:

Parameter Analysis

Performances

Svstem

- Maps of Jason-1 Jason-2 differences to observe possible geographically correlated bias
- Daily monitoring of global Jason-1 Jason-2 differences to observe possible drifts or jumps
- Analyzed parameters:
 - Significant wave height
 - Altimeter ionospheric correction
 - Mispointing from waveforms
 - Backscatter coefficient
 - Altimeter wind speed
 - Radiometer wet troposphere correction

Significant Wave Height

Map of JA1 – JA2 SWH difference (Ku-band), cycles 1 to 20 [cm]

Mispointing from waveforms

- JA1: reduced star tracker availability poorer pointing (no impact on scientific applications)
- Daily monitoring of JA2 mispointing from waveforms much more stable than JA1
- JA2: no real mispointing, but mean of 0.012 deg2. This value is understood see presentation P.Thibaut

Backscattering coefficient

Map of JA1 – JA2 backscattering coefficient difference (Ku-band), cycles 1 to 20 [dB]

Altimeter wind speed

stem Performances

ഗ

cnes

Parameter Analysis

SON

11

Wet tropospheric correction

- For from coast, AMR and JMR have same behavior
- Near to coast, AMR stays longer stable than JMR

Wet tropospheric correction

- Daily monitoring: radiometer model wet troposphere correction very stable for JA2 GDR
- JA1 shows signals up to 7 mm amplitude
- JA2 showed a drift, corrected since cycle 23 (new AMR characterization file)
- Could there not be a risk that real geophysical signals are removed, when JA2 wet troposphere correction is calibrated for GDR?

erformances

Ω

Svstem

Wet tropospheric correction

- Daily monitoring: JA1 JA2 34 GHz brightness temperature not stable
 - Jumps related with yaw maneuvers
- In JA2 IGDR 34GHZ there were additional jumps

Conclusion

- Use of 20 Jason-2 cycles in formation flight configuration with Jason-1
- Very good consistency between altimetric parameters of Jason-2 and Jason-1
- JA2 radiometer (AMR) is near coast more stable than JMR
- AMR drift observed in IGDR are removed for GDR (ARCS), JA2 radiometer wet troposphere is therefore much more stable than JA1's. But could there not be a risk that real geophysical signal is also removed (which would have an impact on MSL) ?
- Model and JA1, JA2 altimeter wind speed histograms have different shapes (due to differences in backscatter coefficients)
- Parameter analysis reveal no particular behavior linked to use of different tracking modes (Median, Diode/DEM)

OSTST Seattle 2009 - Global Statistical Jason-2 assessment and cross-calibration with Jason-1

Performances

Svstem

System Performances

System Performances

- **Objective**: Compare the SLA performances and consistency between Jason-1 and Jason-2
- **Data used**: GDRs and IGDRs from Jason-2 cycles 1 to 20/28 (corresponding cycles 240 to 259/267 for Jason-1)

- In this part, we concentrate on:
 - 1) Analyses at crossovers using IGDR and GDR
 - 2) Along-track analyses of global SLA bias and geographically correlated biases between Jason-1 and Jason-2

Mean of SSH at crossovers

- IGDR:
 - mean of SSH at crossovers show a signal with ~2 cm amplitude
 - JA2 more homogeneous than JA1
- GDR:
 - Mean at crossovers show a great improvement of homogeneity
 - JA1 and JA2 have similar performances

System Performances

Mean of SSH at crossovers over cycles 1 to 28 S **IGDR**: Jason-2 more homogeneous than Jason-1 **IGDR Jason-2 IGDR Jason-1** Ses **GDR**: Jason-2 and Jason-1 equivalent GDR Jason-1 **GDR Jason-2** S OSTST Seattle 2009 - Global Statistical Jason-2 assessment and cross-calibration with Jason-1 cnes

Mean of SSH at crossovers

Std of SSH at crossovers

IGDR:

- JA2 std at crossovers globally lower (5.4cm RMS) than JA1's (5.5 cm RMS), except for last part
- GDR:
 - JA2 and JA1 have similar performances (5.0 cm)

SLA Performances

SIS

Analv

arameter

System Performances

1 cnes JA1-JA2 global differences

Orbit – range – MSS

- Global bias of -8.3 cm
 - Similar for GDR and IGDR
 - Quite stable in time

SLA Performances and Consistency

For IGDR: Geographically correlated patterns (+/-3cm amplitude)

Map of mean JA1/JA2 SLA (orbit – range - mss) differences over cycles 1 to 20

For GDR: very good consistency, though a very small hemispheric bias (+/- 1 cm) is visible -> likely due to slight orbit calculation differences (only few GPS data for Jason-1)

OSTST Seattle 2009 - Global Statistical Jason-2

System Performances

Conclusion

- After 20 cycles of verification phase, Jason-2 shows good SSH performances
 - in the same order as Jason-1 for GDR
 - Better than Jason-1 for IGDR
- SLA consistency between both missions is very good
- Very good consistency between both POE, there is only a weak (+/- 1cm) hemispheric bias between them
- Jason-2 enables to continue study of Mean Sea Level evolution and allows an accurate seamless transition with Jason-1

