

Sea level error budgets: Current status, needs and future improvements

Wednesday, June 24, 2009 OSTST Meeting, Seattle, WA

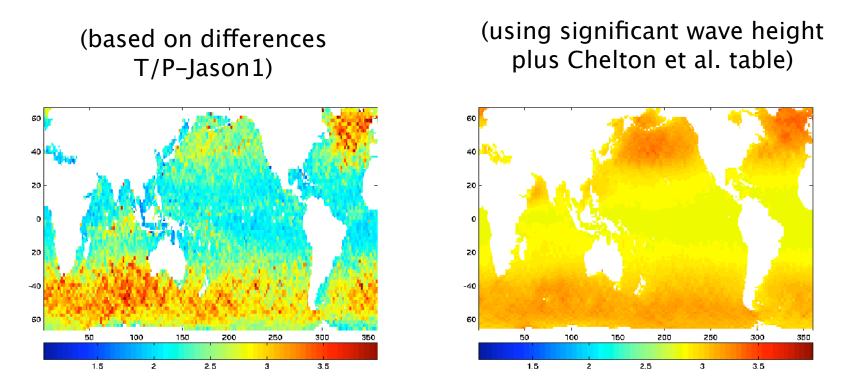
Global mean errors

TABLE 11. The rms System Measurement Accuracy for Side A of the TOPEX/POSEIDON Dual-frequency Altimeter, Which was Active from Launch Through February 1999

Single-pass sea surface height accuracy		
NASA radar altimeter noise#	1.7 cm	Fu et al. (1994)
Ionosphere*	0.5 cm	Intel (1994)
EM bias	2.0 cm	Rodriguez and Martin (1994b)
Skewness	1.2 cm	Rodriquez and Martin (1994b)
Dry troposphere	0.7 cm	Fu et al. (1994)
Wet troposphere	1.1 cm	Ruf et al. (1994)
Orbit	2.5 cm	Ries and Tapley (1999)
Total (RSS) sea surface height	4.1 cm	
Sea-surface height bias and drift errors		
Measurement-system bias ^e	-0.5 cm	Haines et al. (1998)
Measurement-system drift ^d	-0.2 cm year-1	Mitchum (1998)
Single-pass wind/wave accuracies		
Wind speed	2 m sec-1	Callaban et al. (1994)
Significant wave height	0.2 m	Callaban et al. (1994)

"Based on 1-sec averages of the range estimates for 2-m significant wave height.

^bBased on 100-km along-track averages of the dual-frequency altimeter estimates of the ionospheric range correction.


⁴For January 1, 1993, after correcting for the oscillator drift error described in Section 2.4.6. Accounting for systematic *in situ* measurement errors (1-2 cm), the bias is not statistically distinguishable from zero.

^dApplying a correction for the recently discovered drift (0.1 cm year⁻¹) in the TMR measurements of path delay (Keihm et al., 2000) would decrease the magnitude of this estimate.

"Based on data collected prior to degradation of the side A point target response.

Chelton et al., from the "altimeter book"

Beyond global mean errors

(range: 1 to 4 cm)

Ponte, Wunsch & Stammer (2007, J. Atmos. Oce. Tech.)

Purposes and focus for the session

- Assess current understanding of errors in various sea surface height datasets
 - radar noise
 - orbit error
 - environmental corrections (wet/dry troposphere, ionosphere, sea state bias)
 - models (tides, inverted barometer, high frequency correction)
- How can error budgets be improved for past, present and future missions?
- Special topics
 - random and systematic components
 - spatio-temporal and spectral characteristics
 - spatial correlation structures
 - global mean sea level trends
 - hardware and software issues

- ...

Sea Level Error Budgets/Agenda

0930	Ponte/Dorandeu	Introduction and overview
0950	Ablain	Error estimation of the global and regional mean sea level trends from altimetry data
1005	Mitchum	Global sea level rise uncertainty due to land motion and reference frame issues
1020	BREAK	
1050	Chambers	A proposal for tighter stability requirements on the wet path delay correction for Jason-3
1105	Brown	On the long term stability of the radiometer wet tropospheric path delay retrieval: Past, present and a proposal for the future on Jason-3
1120	Ray	Assessment of tide-prediction errors for altimetry
1135	Lyard	Precise error budget for the altimeter-derived tidal constants
1150	Vandemark	Present uncertainties and future refinement of the altimeter sea state bias correction
1205	Kaplan	Error in gridded sea surface height products
1220		Wrap-up
1230	LUNCH	