

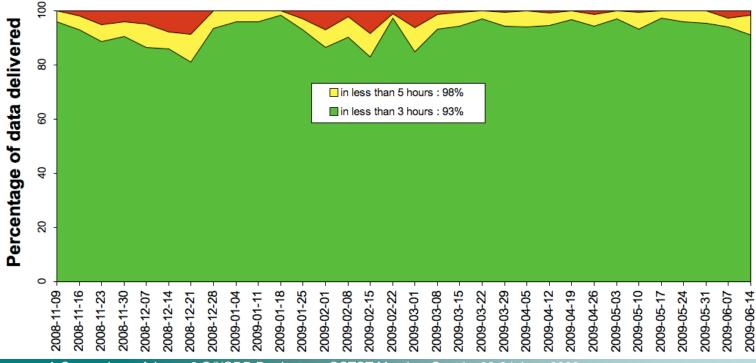
Good, Better, Best: A Comparison of Jason-2 O/I/GDR Products

Remko Scharroo Altimetrics LLC, Cornish, New Hampshire

John Lillibridge and Eric Leuliette

NOAA / Laboratory for Satellite Altimetry, Silver Spring, Maryland

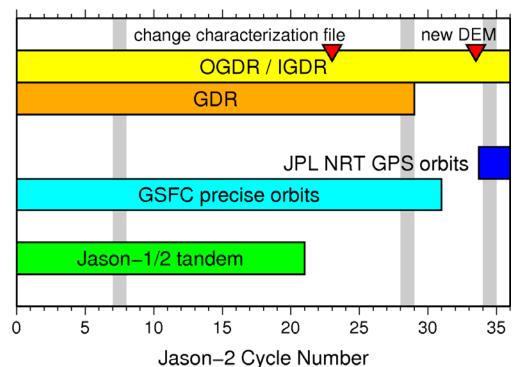
2009 Ocean Surface Topography Science Team Meeting Seattle, Washington, 22-24 June 2009


- Geophysical Data Records (GDR)
 - Approximately 2 months delay (at CLS)
 - Precise orbits; final meteorological fields
 - Fully validated
- Interim Geophysical Data Records (IGDR)
 - Delivered once* daily, approx. 10:30 UTC (at CLS)
 - Delay: 2-3 days
 - Preliminary orbits; final meteorological fields
- Operational Geophysical Data Records (OGDR)
 - Within 3 hours after measurement time
 - Generation at NOAA and Eumetsat
 - Dump-to-dump files (not pass files)
 - DIODE/TRIODE orbits; predicted meteo; no MOG2D

• Latency = Time file delivery – Time measurement

- Target is < 3 hours
- When delivery of a file is partially > 3 hours late, only a fraction counts as delivered in time
- Chart shows the averages per week since handover of operations from CNES to NOAA

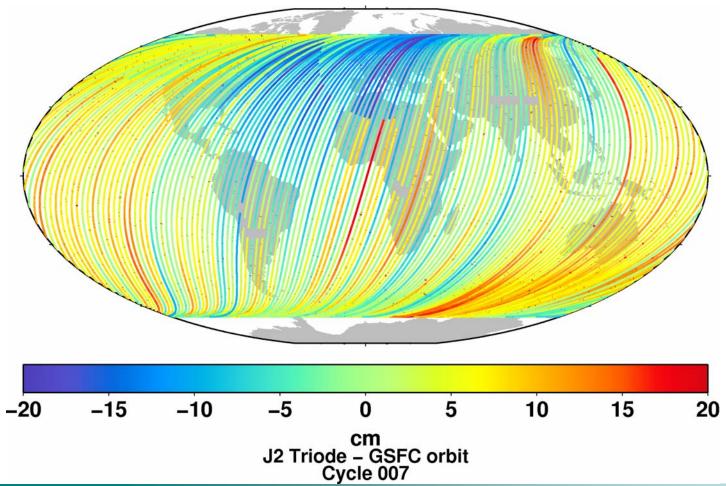
OGDR Timeliness Statistics



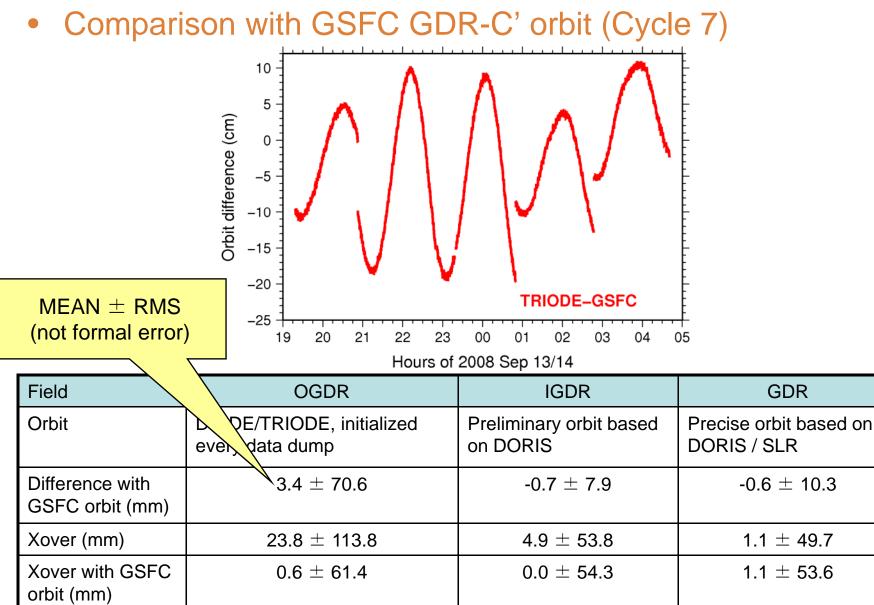
Quality Assessment

• Comparisons

- Cycle 7
 - OGDR, IGDR with GDR
 - J1 with J2
 - Includes effects characterization file change
- Cycle 28
 - OGDR, IGDR with GDR
 - After characterization file change
- Cycle 34
 - JPL Near Real-Time GPS with TRIODE orbits
 - Effect of change
 DIODE/DEM

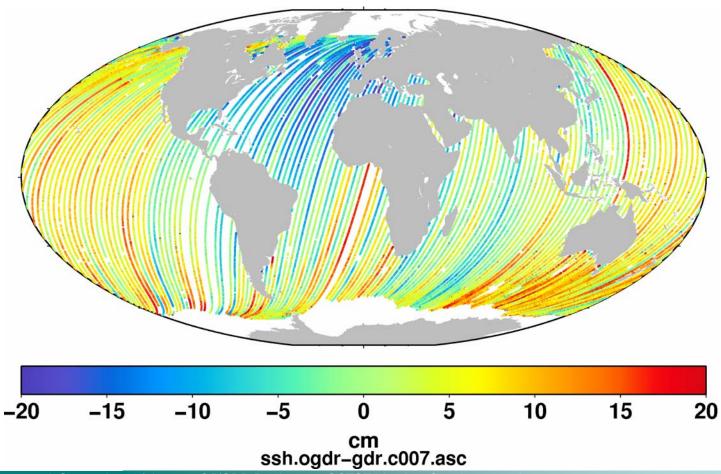

- Prior to characterization file change of Cycle 23
 - Differences include the effect of this change
 - Most OGDR-GDR differences are less than J1-J2 difference!
 - Orbit is serious concern

Field	OGDR - GDR	IGDR - GDR	J1 - GDR
SWH (cm)	0.1 ± 14.1	0.0 ± 6.3	-10.9 ± 19.3
Sigma0 (dB)		0.06 ± 0.08	0.18 ± 0.18
Sigma0 (dB) (smoothed)	0.06 ± 0.07		0.32 ± 0.27
Windspeed (m/s)	$\textbf{-0.20}\pm\textbf{0.22}$	-0.20 ± 0.18	-0.96 ± 0.68
SSH (mm)	9.7 ± 75.0	4.7 ± 18.5	-77.0 ± 35.3
SSH (mm) (GSFC POE)	-0.2 \pm 33.7	4.6 ± 14.8	-77.6 ± 34.8
Radiometer wet tropo (mm)	-4.7 ± 0.9	-4.7 ± 0.8	-0.6 ± 2.6
lono (mm)	-0.1 ± 10.0	-0.1 ± 4.8	-8.5 ± 14.8



- Comparison with GSFC GDR-C' orbit
 - Edge of Usingen data dump is visible
 - New TRIODE orbit initialized there

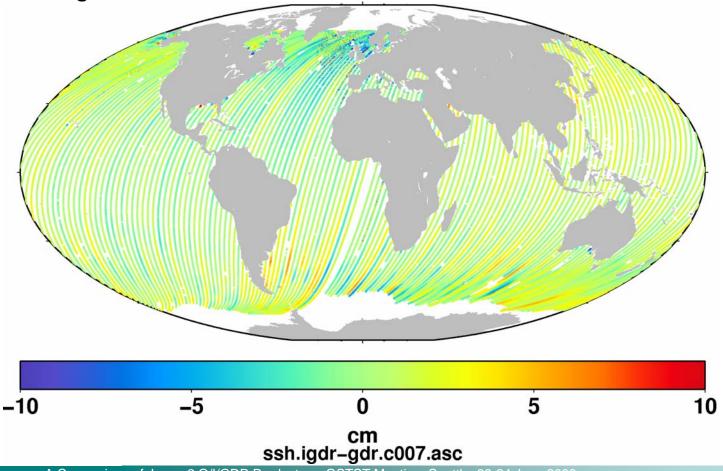
Orbit accuracy



SSH differences Cycle 7

• OGDR-GDR

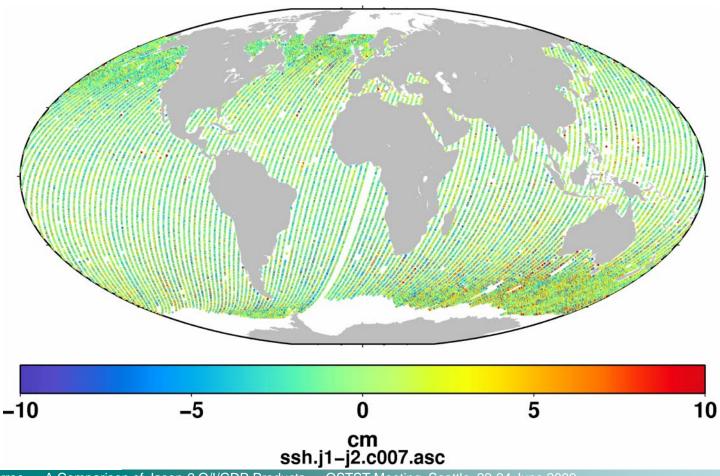
- Orbit differences are most prominent



SSH differences Cycle 7

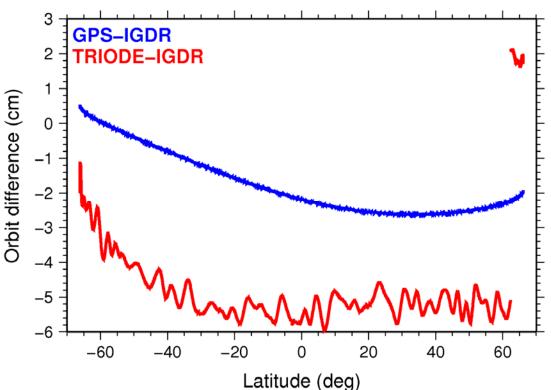
• IGDR-GDR

- Still mostly orbit differences
- 'Noise' within Usingen circle due to difference in IGDR and GDR timing



SSH differences Cycle 7

• Jason-1 - Jason-2 (GDR)


- Some noise due to interpolation
- Slight differences in instrumentation

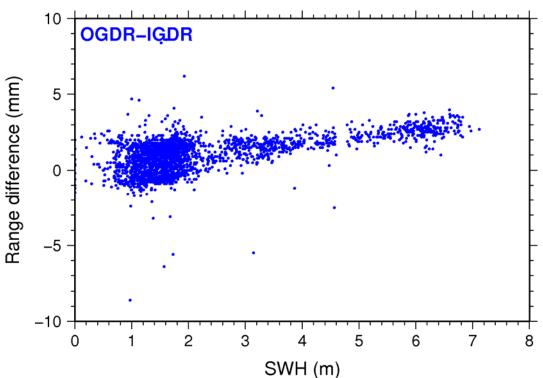
Comparison Cycle 34

- JPL NRT GPS orbit available since end Cycle 33
 - Available a few hours after the OGDRs
 - No jumps at Usingen
 - No short wavelength noise

OGDR-IGDR diffTRIODE OrbitGPS OrbitSSH (mm)
(OGDR-IGDR) 5.3 ± 51.7 1.4 ± 38.5 Xover (mm) -10.1 ± 82.6 2.6 ± 62.6

• Compare OGDRs and IGDRs to GDRs

Field	OGDR - GDR	IGDR - GDR
SWH (cm)	0.0 ± 0.8	0.0 ± 0.6
Sigma0 (dB) (sm)	0.00 ± 0.04	0.00 ± 0.01
Windspeed (m/s)	-0.01 ± 0.10	0.00 ± 0.04
SSH (mm)	11.7 ± 47.1	-0.2 \pm 21.3
Wet tropo (mm)	0.0 ± 1.2	0.0 ± 0.1
lono (mm)	-0.2 ± 6.3	-0.1 ± 0.6
ECMWF wet	-1.1 ± 14.8	0.0 ± 0.0
ECMWF dry	-0.1 ± 2.5	0.0 ± 0.0
IB	-3.3 \pm 21.9	-0.8 ± 10.7


SSH	OGDR	IGDR	GDR
Xovers (mm)	-5.9 ± 74.8	28.6 ± 55.7	10.8 ± 48.4
Xovers with GSFC orbit (mm)	12.4 ± 61.0	12.3 ± 51.6	12.3 ± 49.4

Range difference OGDR-IGDR

• Cycle 34, pass 115

- Has identical time tags on OGDR and IGDR
- Range, SWH, Sigma0 differences can be quite significant over land
- Retracker conversion depends on initial height
- Range difference depends on SWH. Why?

altitude – tracker range (m)

0

-2

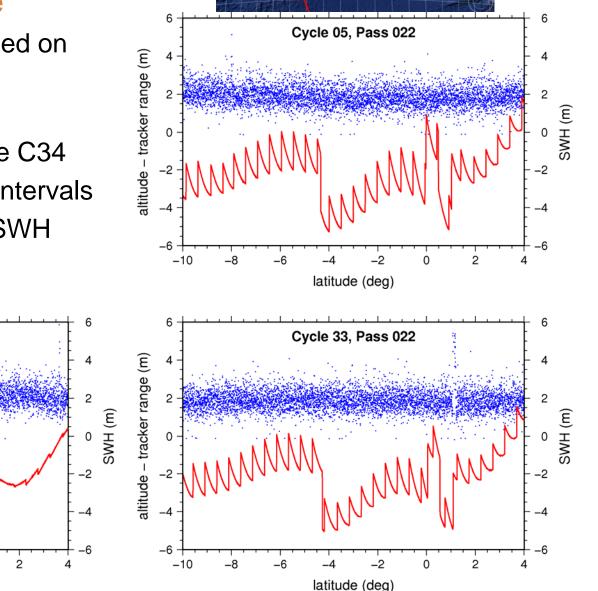
-4

-6

-10

DIODE/DEM tracker

Considered alternative


- Presets range gate based on DIODE orbit and DEM
- Repeatable artifacts
- Sawtooth reduced since C34
- Large 2-m jumps at 1° intervals

Cycle 34, Pass 022

-2

latitude (deg)

No apparent effect on SWH

• AMR Enhancement product

- Shannon Brown has produced AMR data to be used in coastal areas; reverts to original data about 40 km from coast
- Approximately one week delay
- GPS sea surface height anomalies
 - This product is similar to the OGDR SSHA product but includes a GPS-based orbit and its associated SSHA
 - A few hours delay after OGDR release
- Sigma0 smoothing
 - Graham Quartly has suggested a correction model

All products

- High noise in sigma0
 - Graham Quartly suggests an empirical fix
 - Pierre Thibaut suggests computing sigma0 with MLE3
- SSB should be different from Jason-1
 - New model needed
- Rain flag never set
 - Algorithm was based on MLE3, no more applicable
- Long-period non-equilibrium tide is erroneous
 - Contains part of equilibrium tide. Ignore, is small.
- Pole tide over inland seas and lakes is as over ocean
 - Should be as over land; simple scale factor
- All AMR measurements are moved 1 second down the track
 - Applies also to JMR

Product quality

- Wind and wave data on Jason-2 OGDR and IGDR are closer to the GDR than Jason-1 GDR measurements
- SSH on Jason-2 IGDR is closer to the GDR than the Jason-1 SSH
- Only orbit error makes OGDR SSH less accurate
- With GPS NRT orbits OGDR SSH comes as close the GDR as Jason-1 SSH
- Remaining issues
 - Recommendation to include more accurate orbit on OGDR
 - Smaller problems in all products need to be considered before final GDR release