Effect of Meridional Shear on Equatorial Waves - Revisited

Ted Durland, Dudley Chelton, Roland deSzoeke and Roger Samelson College of Oceanic and Atmospheric Sciences, Oregon State University

Chelton et al. 2003 showed that the quasi-annual Rossby wave is highly asymmetric about the equator across much of the equatorial Pacific. They also showed that when the shallow water equations are linearized about a background current system representative of the upper 250m, the numerically calculated ssh eigenfunctions of the first meridional mode Rossby wave bear a striking resemblance to the corresponding first eofs of altimetry observations.

Research Goal

In order to use equatorial wave theory effectively to explain the observations, we first seek a comprehensive understanding of how the equatorial current system affects the equatorial wave spectrum:

- Source(s) of dispersion and structure modification?
- (Advection, background pv anomalies, layer thickness anomalies)
- Why are different modes affected differently?
- Is complementary modification of mode structures/dispersion relations inevitable or fortuitous?

Perturbation expansion solution After Ripa and Marinone 1983

Sha

$\delta Q = -(\partial_y U + yH)$ Is the linearized background pv anomaly.

(In progress) Expressed in terms of Hermit	te solutions:
$ \begin{pmatrix} u^{0} \\ v^{0} \\ h^{0} \end{pmatrix} = \begin{pmatrix} \tilde{u}_{mn} \\ \tilde{v}_{mn} \\ \tilde{h}_{mn} \end{pmatrix}, \sigma^{0} = \tilde{\sigma}_{mn} $	$\begin{pmatrix} u^{1} \\ v^{1} \\ h^{1} \end{pmatrix} = \sum_{p,q} A_{pq} \begin{pmatrix} \tilde{u}_{pq} \\ \tilde{v}_{pq} \\ \tilde{h}_{pq} \end{pmatrix}$
Expansion coefficients: $A_{pq} = \frac{i}{\tilde{\sigma}_{pq} - \tilde{\sigma}_{mn}} \int \left(\tilde{u}_{pq}^{*} \ \tilde{v}_{pq}^{*} \ \tilde{h}_{pq}^{*} \right)$	$ {}^{*}_{pq} \begin{pmatrix} ikU & \partial_{y}U & 0 \\ 0 & ikU & 0 \\ ikH & H\partial_{y} + \partial_{y}H & ikU \end{pmatrix} \begin{pmatrix} \tilde{u}_{mn} \\ \tilde{v}_{mn} \\ \tilde{h}_{mn} \end{pmatrix} dy $
or	(z)

In spite of the remarkable coincidence noted above, forcing patterns must still be invoked to explain observed asymmetry, because the asymmetries introduced in higher meridional modes can compensate for the asymmetry in the first mode.

Shallow water equa	itions linea	rized about wea	ak, geostro	phic, mean :	zonal currer	nts		
$u = u_* / c = \hat{U}$	$(y) + \varepsilon \hat{u}(x, y, z)$	<i>t</i>),	$C = \sqrt{2}$	$\overline{g'H_0}$,				
$v = v_* / c =$	$v = v_*/c = \varepsilon \hat{v}(x, y, t),$ $(x, y) = (x_*, y_*)\sqrt{\beta/c},$							
$h = h_* / H_0 =$	$h = h_* / H_0 = 1 + \hat{H}(y) + \varepsilon \hat{h}(x, y, t), \qquad t = t_* \sqrt{\beta c}.$							
$\partial_t \hat{u} + \hat{U} \partial_x \hat{u} +$	$(\partial_{y}\hat{U}-y)\hat{v}$	$+ \partial_x \hat{h} = 0,$						
$\partial_t \hat{v} + \hat{U} \partial_x \hat{v} +$	$\partial_t \hat{v} + \hat{U} \partial_x \hat{v} + y \hat{u} + \partial_y \hat{h} = 0, \qquad (\hat{U}, \hat{H}) = \varepsilon(U, H),$							
$\partial_t \hat{h} + \hat{U} \partial_x \hat{h} +$	$-(1+\hat{H})\partial_x\hat{u}$	$+ \partial_y [(1+\hat{H})\hat{v}] = 0$		$(\hat{u},\hat{v},\hat{h}) = \varepsilon(u)$	$(v,h)e^{i(kx-\sigma t)}$.			
$\begin{bmatrix} 0 & -y & ik \\ y & 0 & \partial_y \\ ik & \partial_y & 0 \end{bmatrix}$	$\left(\begin{array}{c} z\\ y\\ z \end{array} \right) + \varepsilon \begin{pmatrix} ikU\\ 0\\ ikH \end{pmatrix}$	$ \begin{array}{ccc} \partial_{y}U & 0\\ ikU & 0\\ (\partial_{y}H + H\partial_{y}) & ikU \end{array} $	$(u) - i\sigma \begin{bmatrix} u \\ v \\ h \end{bmatrix}$	= 0				
$\begin{pmatrix} u \\ v \\ h \end{pmatrix} = \sum_{n=0}^{\infty} \begin{pmatrix} u^n \\ v^n \\ h^n \end{pmatrix}$	$\left(\varepsilon^{n}\right) \varepsilon^{n}, \qquad \sigma =$	$\sum_{n=0}^{\infty} \sigma_n \varepsilon^n, \qquad \begin{bmatrix} 0 \\ y \\ ik \end{bmatrix}$	$ \begin{array}{cc} -y & ik \\ 0 & \partial_y \\ \partial_y & 0 \end{array} \right) - $	$i\sigma_0 \begin{bmatrix} u^0 \\ v^0 \\ h^0 \end{bmatrix} = 0.$				
O(1): Classical Her	rmite soluti	ons						
$(L_k - i\sigma_0) \begin{pmatrix} u^0 \\ v^0 \\ h^0 \end{pmatrix} = 0,$	$\begin{pmatrix} u^{0} \\ v^{0} \\ h^{0} \end{pmatrix} = \begin{pmatrix} \hat{u} \\ \hat{v} \\ \hat{v} \\ \hat{l} \end{pmatrix}$	$\left(\tilde{i}_{m,n} \atop \tilde{j}_{m,n} \atop \tilde{i}_{m,n} \right), \sigma_0 = \tilde{\sigma}_{m,n},$	$ \begin{pmatrix} m : mer \\ n = 1 \\ n = 1, 3 \\ n = 1, 2, \end{cases} $	for $n = -1$ (for $n = 0$ (Y) for $n > 0$ (R)	# [Kw] [w] w & Igw])			
Normaliz	ation: $\int (i)$	$\tilde{u}_{m,n}\Big ^2 + \left \tilde{v}_{m,n}\right ^2 + \left \tilde{h}_{m,n}\right ^2 + \left \tilde{h}_{m,n}\right$	$\left a_{n,n} \right ^2 dy = 1$					
$O(\varepsilon)$ correction:								
$(L_k - i\sigma_0) \begin{pmatrix} u^1 \\ v^1 \\ h^1 \end{pmatrix} = - \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	ikU +	$egin{pmatrix} 0 & \partial_y U & 0 \ 0 & 0 & 0 \ 0 & \partial_y H & 0 \end{pmatrix}$	+ $\begin{pmatrix} 0\\0\\ik. \end{pmatrix}$	$ \begin{array}{ccc} 0 & 0 \\ 0 & 0 \\ H & H\partial_y & 0 \end{array} $	$-i\sigma_1$	$\begin{pmatrix} u^0 \\ v^0 \\ h^0 \end{pmatrix}$		
() L	Doppler shift	Background pv anomaly	Lay	rer thickness momaly	Frequence correction	cy n		
Corrections expand	led							
In Hermite functions	S	frequenc	:v correctio	n				
		noquone	,					

Modifications to mode-1 long Rossby wave h structure

Lowest 4 meridional modes for annual Rossby wave ssh No background currents (black), 140W equatorial current system (red) Note the complementary asymmetries: odd modes enhanced in the north, even modes enhanced in the south.

Asymmetric modes 1 and 2 can produce nearly symmetric signal.

SSH in 1-1/2 layer model linearized about U(140W,y). Symmetric zonal wind produces locally symmetric response (modes 1& 2). At annual period, modes can't separate in time to produce significant asymmetry within Pacific basin.

Rossby wave dispersion curves

ikU

-0.5

 $ikH H\partial_v + \partial_v H$

Asymmetry in eigenfunctions produced by antisymmetric part of (U,H)

 $v^{1} = \sum A_{p,q} \left| \tilde{v}_{p,q} \right| , A_{m,n} = 0.$ $\sigma_{1} = -i \int (u^{0}, v^{0}, h^{0})^{*} \left| 0 \right|$

2U_s

Mode 1 advected primarily by Equatorial Undercurrent, and also slowed down by negative pv-gradient anomaly produced by positive Uyy on flanks of undercurrent.

 $O(\varepsilon)$ solution accurately predicts eigenstructure for weak currents (30% of nominal). Mode-2 contribution introduces asymmetry, Mode-3 widens eigenfunction & moves peaks poleward.

Modification of Rossby wave dispersion relations by equatorial currents: lowest four meridional modes. Difference in phase speed between odd and even modes is decreased.

Mode 2 advected primarily by South Equatorial Current, and also sped up by positive pv-gradient anomaly produced by negative Uyy at peak of undercurrent.

to accurately predict structure and phase speed for full-strength currents. $O(\varepsilon)$ solution correctly predicts trends. Empirically derived expansion coefficients (right) show that eigenfunction modified by fullstrength currents can still be

approximated with minimal number of Hermite modes.