ENSO modulated by Lunar cycles

Claire Perigaud OSTST, 22-24 June 2009 Jet Propulsion Laboratory

ENSO recharge: zonally averaged SLA North (+) South (-) and Equator(-)

Sea Level Anomalies: SLA from TOPEX/Poseidon [Oct97-to-Aug98] - [Jan93-to-Jan96]

[2001-2004] - [1993-1996] "decadal" change from TP-Jason.

Introductory Summary

- Ocean/Atmos data & Ocean models give evidence for Tropical Instability Waves (TIW) modulated by biweekly Lunar cycles.
- Conversely to ENSO-SST-TX and the Delayed Recharge Oscillator Paradigm (DROP), altimetry monitors a level of recharge with opposite signs in the North and South.

Coupled O/A models simulate symmetric DROP because they fail to reproduce the observed meridional circulation TY.

- 3. ENSO-TIW modulations are consistent with 1997 min and 2006 max Lunar Inclination extrema (18.6yr cycle).
- 4. Lunar- added to solar-forcing of climate models may allow to simulate antisymmetric recharge and explain some paleoclimate puzzles.

ENSO forecasts initialized with:

3. Intermediate Coupled Ocean-Atmos/land Model (ICM)

Climate Change in the Tropics induced by Indian Weather events

Monthly or daily averaged forcings: Model response **QSCAT** data **TRMM** data in Salinity 25°N 25°N 1.25 1.2 1.15 1.1 1.05 20°N 20°N 20°N 15°N 15°N 1 0.95 0.9 10°N 10°N 10°N 0.85 0.8 0.75 5°N 5°N 0°N 0°N 0.65 0.6 0.55 0.45 0.45 0.45 0.35 0.25 0.255°S 5°S 10°S 10°S 10°S 15°S 15°S 20°S 20°S 20°S 100°E 40°E 50°E 60°E 70°E 80°E . 100°E 40°E 80°E 100°E 50°E 60°F 70°E 80°E 90°E 60°E Psu 40°E mm/da 22 24 26 28 30 32 34 36 38 TX forcing Exp(_month, _day) Precip forcing Exp(_month, _day) Model Salinity Exp(_month _day) 32 50 31 30 Ng Dyn/cm² 30 29 20 28 Ω 27 FMAMJJASONDJ FMAMJJASONDJ FMAMJJAS J F M A M J J A S O N D J F M A M J J A S O N D J F M A M J J A S O N D 2000 2001 2002 2003 2004 2005 2000 2001 2002 2000 2001 2002 **Daily forced**

Monthly forced

Indian oceanic resonance at 180days and harmonics (Kelvin+Rossby) and at biweekly MRGW are excited by weather regimes. Impact Salt in the BB in Oct, SST in the South in Dec-Jan and the atmosphere in the tropics + North.

ENSO, Indo-Pacific recharge (TPJ), and weather bursts (QSCAT&TRMM).

SL dispersion diagram obtained by Kalman Filtering Geosat

* see Fu et al. (1990) extended to the filtering of Mixed Rossby Gravity Waves in Indian Ocean.

TIW forced by QuikSCAT in Indian ICM

Meridional wind stress (dyn/cm2) and surface current (m/s) along the equator

~15 day reversals are present in QSCAT all throughout the year, stronger than in other winds \rightarrow model TIWs are dominated by ~15 days. Wind reversals LEAD the Ocean TIWs (Ogata et al., 2007), but this is in the case of ocean experiments FORCED by Atmos.

Biweekly TIWs in TY and SL forced by QSCAT

QSCAT vorticity TIW Pacific

Correlates with biweekly OLR and leads SST

OLR biweekly signal in all tropics

Biweekly OLR signals are in the tropical Indian and Pacific TIW zone too.

TY and SL NCEP or ECCO

Biweekly SWH in the tropical swell pools

Swell modifies the Ocean Wind Stress Work Vector directions

Moon Climatology of TRMM rain and QSCATstress vectors

Moon Climatology of QSCAT and TRMM

12 "MC-months" = 29.53 days \rightarrow each "MC-month" = 2.46 days

TIW from ECCO and Ind_qscat+trmm

Exple: TY and SL on day= 22 Sep 2002 relative to mean { (day+7) and (day-7) }

TY QSCAT: 22 Sep 2002: Full Moon (Syn=181) Declin=3.35 10^{4}

Meridional Wind stress TY from QuikSCAT

ECCO SL: 22 Sep 2002: Full Moon(Syn=181) Declin=3.3S

Sea Level from ECCO Exp.kf066b

TIW index stronger in 2006 during Max Lunar inclination than in 1996/97 during Lunar minimum. Event collapsed in Jan 2007 because of strong cooling TIW activity during Lunar max. Biweekly Lunar forcing to be implemented in climate models.

Degree Celsius

Conclusion and Perspectives

- Biweekly TIWs found in cross-equatorial winds, currents, OLR, rain, SWH, Sea Level λ ~3000 km, 200cm/s to the W, source = ocean (MRGW).
- Role in interhemispheric exchanges (climate, TC).
- Active (Indian, Atlantic resonant basin geometry) all year around in the 3 oceans (West Pac: TC, East Pac: ENSO).
- Luni-Solar gravitational triggering of TIW.
- COUPLED models fail to reproduce TIWs and are overwhelmed by symmetric patterns.
- Let's add the Luni-Solar gravitational forcing in CGCMs.

