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Outline

« Autonomous instruments: transforming subsurface ocean
observations.

« What are we learning about the global ocean?

» Mean fields (temperature, salinity, and circulation)
» Seasonal variability

» Interannual variability (ENSO)
» The Argo era

» Multi-decadal trends

> Centennial change — Challenger to Argo } A S IEieE] eenE



The profiling float: transforming global ocean observations

3200 free-drifting Argo floats collect high-quality temperature/salinity (T/S)
profiles, 0 — 2000 m, and velocity at 1000 m, every 10 days.

Heat (from T) and freshwater (from S) are fundamental elements of climate.

In future, Argo will measure not only T and S, but also oxygen, nutrients, pH,
and biological parameters.

'

4 Salinity & Temperature

1 profile recorded during ascent
1 =10 cmis (~6 hours)

Schematic of an Argo float cycle.
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No nation could implement Argo alone; cooperation is essential.
All of the data are freely and immediately available (www.argo.net).



The significance of global coverage

Throughout the history of oceanography, subsurface data collection required
a ship (or mooring) to be present. The profiling float removed this limitation.
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2005 - 2010: Argo
August T,S
profiles > 1000 m.

The global nature of Argo makes it effective for:

« Combining with other global observations (e.g. satellite altimetry)

« Observing the patterns and evolution of global climate variability (e.g.: El Nifio)

« Comparing the modern ocean with previous “transect” data (e.g.: WOCE, Challenger,...



Advancing float technology

0.

400,

800.

1200.

1600.

2000.

400,

800.

1200.

1600.

2000.

2.0

6.0 10.0 14.0 18.0 22.0 26.0 34.60 35.00 35.40 35.80 36.20
I I S [ A |

0 | |

T, _ 0/S

~ 26.0

— 2.0

— 18.0

- 14.0

~ 10.0

- 6.0

R3.5

T T l T I T l T I I T I I I I l T
24.5 R5.5 26.5 R7.5 34.60 35.00 35.40 35.80 36.20

WMO ID 5903762, 16°S, 153°W

2.0

— 400.

— 800.

~ 1600.

2000.

Float technologies continue to
improve, and capabilities now
include:

Increased lifetime (> 300
cycles)

Profiling to 2000 m anywhere in
the world

Measurements near the sea
surface (1 decibar)

High vertical resolution (2
decibar bin-averaged data; 1
decibar in the top 10 bins)

2-way communication, so
mission can be changed.

Lightweight, and smaller than
earlier floats.

The future:

Deep-ocean Argo floats are
under development.

Added sensors will enable
observations of biogeochemical
impacts of climate variability
and change.
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Research topics include water-mass properties
and formation, air-sea interaction, ocean
circulation and transport, mesoscale eddies,

ocean dynamics, and seasonal-to-decadal climate

variability and change.

Also: Education and Outreach

See: http://www.argo.ucsd.edu/Educational_Use.html

Operational forecasting/analysis
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Operational centers around the world
use Argo data in ocean state
estimation, short-term forecasting

and seasonal to decadal prediction.
http://www.argo.ucsd.edu/Use_by Operational.html

All Argo data freely available via the internet (http://www.argo.net) and GTS.




MEAN FIELDS



Argo and WOCE “mean fields”

Potential temperature (°C) 500 m
WOCE Pacific Atlas, Talley (2007)
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From a few thousand profiles:

WOCE produced neither a snapshot or a
time mean, but rather a multi-year composite
of snapshots from many transects. The
sampling errors are difficult to estimate.

Potential temperature (°C) 500 m
Argo 2005-2010 mean
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From a few hundred thousand profiles:
Argo provides both time means and snapshots,
with realistic error estimates. (Inset plot:
standard deviation of monthly temperatures)



North Atlantic time-mean upper ocean circulation
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Argo profiles & displacements, along with dynamical constraints, to map upper

ocean velocity, geostrophic velocity, temperature, salinity & potential vorticity.

Mapped surface elevation [m] Mapped 1000 dbar pressure [m]
1 _05 0 0.5 1 -02 -0.15 -0.1 -0.05 0 005 01 015 0.2

Jayne et al., 2011 Argo and Altimetry Workshop



SEASONAL VARIABILITY
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Seasonal contrast

Zonal average of Sep —
Mar temperature
difference (color shading)

Zonal average
temperature (contours)

2005-2010

Same for salinity.

Sea surface changes are
due to air-sea exchange
of heat and water. Sub-
surface changes are
largely due to ocean
dynamics.



Steric height and heat gain
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- Globally-averaged steric height is controlled by
southern hemisphere ocean temperature.
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Heat gain 2005-2010, 0-2000db - The northern and southern hemisphere oceans
~~ | gain and lose heat seasonally at about 80
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- In the global (ocean) average of about 20
W/m?2, the southern hemisphere dominates
because of the larger ocean area.
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INTERANNUAL (ENSO) VARIABILITY



The global ocean imprint of ENSO
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Global El Nifio/La Nina variability

Time-series of globally-averaged temperature and salinity vs depth
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For the combined layers (0-500 m), the ocean
loses heat during El Nifio and gains heat during
La Nifa. Black: smoothed heat gain, 0-500 m.
Red: linear regression of Nifio 3.4 index onto heat
gain.

(Roemmich and Gilson, 2011)

Tropical Pacific temperature anomalies do not average out in global means.

Moreover, surface layer (0-100m) anomalies are opposite to the 100-500m layer.

Interannual heat content fluctuations in the individual layers are up to 3.3 x 1022 J/yr (2 W/m?).



THE ARGO ERA



Globally-averaged temperature anomaly, °C "™ T-anomaly at 1500 m
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Combining Argo, altimetry, and GRACE
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Chambers and Willis,
Can a combination of
altimetry, Argo, and
GRACE detect deep
ocean warming? (Argo
and Altimetry
Workshop)

a, = 1.2 £ 1.0 mml/year (95% confidence), suggesting warming below 1000

m (consistent with Purkey and Johnson, 2010)

a, = 0.024 £ 0.004 (95% confidence), or 2.4%SWH error



MULTI-DECADAL CHANGE



Ocean heat content: Argo and historical data

The major sources of uncertainty in heat content from historical data are XBT fall-
rate error and sparse sampling.
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Levitus et al. (2009) 50-yr heat gain: May Lyman et al. (2010). Different XBT fall-
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How much heat is in the deep ocean
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Purkey and Johnson

__———|(2010) analyzed

| repeating (sparse) deep
-1 hydrographic transects.

__|] Heat gain below 2000 m
| was 0.07 W/m?2 £ 0.06

(a) |

20 40 -2

Heat gain (106 W/m3)

0.0 -1

] Total net energy change Net radiation.\
3 including melting Arc aice
4 Greenland, Antarctic

tic seal
a, glaciers

Global net energy budget

)

Ocean heat content change

Trenberth and Fasullo, 2010, Trenberth et

2000

al., 2009. Net downward radiation 2000-

2004 of 0.9 £ 0.5 W/m? Missing energy??

ASSH or ASH (cm/decade)

below 700 m? below 2000 m?

Sutton and Roemmich, 2011, estimated ASH
in proportion to ASSH using WOCE, Argo,
and altimetry data.

Heat gain south of 20°S was 1 x 1022 J/yr,
1.1 W/m? (total water column)

T T T
I I cstimated ASH .00
I estimated ASH, o

- - estimated AMass

Total = measured ASSH

-55 -50 -45 -40 -35 -30 -25
latitude

The Argo Program is presently
developing “Deep Argo” profiling floats.



The 50-year salinity record

Salinity change consistent with an increase in the global hydrological cycle.
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Zonal averages, from Hosoda et al.
(2011, Argo and Altimetry Workshop)

Surface layer salinity has increased in the salty regions
and decreased in the fresh regions.

In a steady state net E-P is balanced by horizontal
advection (u « VS) and mixing. The change in VS likely
indicates an increase in global rates of evaporation and
precipitation, by 3-4% Hosoda et al. (2009, 2011). Also
Helm et al (2010), Durack and Wijffels (2010).
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CENTENNIAL CHANGE:
ARGO AND CHALLENGER



Centennial change: Argo and Challenger
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Figure 11.3A Challenger section (1873) from New York to
Bermuda to Virgin Islands. (Tizard et al,, 1885b, p. 135.)

In the first global oceanographic expedition, HMS
Challenger obtained 263 temperature profiles, 1872 —
1876, using pressure-protected min/max thermometers.

Since Argo measures temperature everywhere, we have
263 profiles of “Argo-minus-Challenger” temperature
difference.

Challenger-to-Argo is the maximum time interval possible
(> 130 years) for the instrumental record of (subsurface)
ocean temperature change.

Min/max protected thermometer
from HMS Challenger (Fig from
Tait, 1881)



Depth (m)
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Centennial change: Argo and Challenger
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Heat gain, 0-1000 m: 0.3 x 1022 J/yr (0.2 W/m?) Roemmich, Gould, and Gilson (in prep)
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Summary: heat and freshwater SANEL
signals in the global ocean AL SR
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« Seasonal cycle : o By

Heat 20 W/m?; good agreement with A-S flux
Dynamical signals (adiabatic) obscure thermodynamical ones

Interannual (ENSO) variability:

— Heat 2 W/m?; ocean loses heat during El Nino
— Freshwater 3 cm (missing Indonesia?); ocean fresher during El Nino

Decadal/Centennial global change:
— Heat 0.2 - 0.6 W/m? (0-700 m) depending on time period (ranging from 15 years to 135
years); Deep Argo needed to close heat and sea level budgets effectively.
— Cannot accurately detect long-term storage in short records.
— Increasing sea surface salinity contrast implies hydrological cycle enhanced
— Freshwater trend difficult to observe.

The ocean observing system should be global, including the deep ocean,
marginal seas and high latitudes.



