

October 2011

## High-Precision Comparisons of Bottom-Pressure & Altimetric Tides

### **Richard Ray** NASA Goddard Space Flight Center

## OSTST meeting – San Diego

### Two independent measurements of M2 amplitudes: 32.067 cm 32.074 cm

"When it comes to four-figure accuracies, it is no longer oceanography."

- Walter Munk Affairs of the Sea, 1980 "Looking at everything with a sharply improved precision is a good [path to] making important contributions."

> — Irwin Shapiro Response to Bowie Medal, 1994

## **Old 102-station Deep-ocean Tidal Validation Dataset**



Constructed mainly by David Cartwright and Christian Le Provost Used by Shum et al (JGR, 1997) and many others.

Best altimeter-based tide models have  $M_2 RMS = 1.5 cm$ .

## New "ground truth" dataset

### 137 stations.

**Only bottom-pressure stations.** 

#### No short time series - All > 90 days.

80% are one year or longer. 65% are two years or longer.

### Many time series reanalyzed.

- 71 by me.
- 14 by Doug Luther.
- 27 by Proudman Lab. (via GLOUP database)



### **DART Tsunami Network Is Invaluable**

**But....** 

1. Data can be noisy (because of acoustic & satellite links?)

Many thanks to Andreas Macrander, AWI, for cleaning up DART data

2. Small station movements over time



Red lines: Times of new deployments

# Correcting tidal amplitudes when time series consists of *mean* values

amplitude error  $=\frac{1}{T}\int_{-T/2}^{T/2}\cos(2\pi t/P)\,dt = (P/\pi T)\,\sin(\pi T/P)$ 

P =tidal period T =averaging interval

See, for example, Malin & Chapman, Geophys. J. Royal Astr. Soc., 19, 15, 1970

For hourly values, amplitude correction factors are:

| Diurnal:    | 1.00286 | Semidiurnal:    | 1.0115 |
|-------------|---------|-----------------|--------|
| Terdiurnal: | 1.02617 | Quarterdiurnal: | 1.0472 |

Recent POL data: 15-minute means ASTTEX, KESS data: hourly means

DART data: 15-minute spot values Old IAPSO data: ????? RMS differences (cm) model GOT4.7



## Can we use these precise data to study air and earth tides?

- Bottom pressure recorders sensitive to air tides.

- Altimetry is sensitive to earth tides.

### Detection of air tides in BP-altimeter differences

#### **RMS Differences (cm) with respect to GOT4.7**

|                                   | P1    | <b>S</b> 1 | K1    | T2    | <b>S</b> 2 |
|-----------------------------------|-------|------------|-------|-------|------------|
| Before removing air tides from BP | 0.188 | 0.454      | 0.276 | 0.151 | 1.083      |
| After removing air tides from BP  | 0.196 | 0.291      | 0.254 | 0.132 | 0.567      |
| Bootstrap 1-σ                     | 0.011 | 0.018      | 0.019 | 0.008 | 0.034      |

Major air tides (amplitude ~ 1 mb) are S1, S2. Seasonal sidelines are P1,K1 and T2,R2. Air-tide model based on 3-hr ECMWF. RMS based on 32 tropical stations. Technique does not work for R2 because of no valid altimeter estimate.

## Air tide clearly detected for S1, T2, S2.

### **S2 Barometric Tide**



### But S2 is problematic for altimetry (β' effects)

"S2 is our punishment." –Florent Lyard

Two updates to GOT4.7:

GOT4.8 — corrected S2 air-tide sampling in T/P dry-trop correction.

GOT4.9 — as GOT4.8 but also applied T/P CoM correction (previously ignored).

### Which agrees better with BP data?

Note: GOT4.8 better reduces 59-d oscillations in JASON mean sea levels.

### RMS Differences (cm) Bottom pressure vs. Altimetry

|                          | GOT4.7 | GOT4.8 | GOT4.9 |
|--------------------------|--------|--------|--------|
| None                     | 1.083  | 0.988  | 0.973  |
| Haurwitz-Cowley analytic | 0.551  | 0.356  | 0.460  |
| ECMWF 6-h (Ray-Ponte)    | 0.551  | 0.352  | 0.461  |
| ECMWF 3-h                | 0.567  | 0.349  | 0.487  |
| MERRA                    | 1.006  | 0.907  | 0.896  |

Bootstrap uncertainty of RMS values ~ 0.05 cm

GOT4.8 is more accurate than GOT4.9; Different tide models for T/P vs Jason??? The 2 satellites are inconsistent at S2.

# Can we use BP-Alt differences to solve for body-tide Love numbers?

body tide =  $h_2 \Phi / g$ , where  $h_2$  is ~0.6

|            | Estimate from<br>BP – Altimetry | GDR<br>value | IERS<br>Conventions |
|------------|---------------------------------|--------------|---------------------|
| M2         | 0.613 ± 0.043                   | 0.609        | 0.608               |
| 01         | 0.610 ± 0.024                   | 0.609        | 0.603               |
| <b>K</b> 1 | 0.542 ± 0.019                   | 0.520        | 0.524               |

- Clearly detects core-nutation resonance at K1.
- Data not sensitive to body-tide lag (expected value ~0.1°).
- Uncertainties probably too large to improve seismic-based models.

## Summary

- (1) New "ground truth" tidal validation dataset has been constructed from bottom-pressure measurements, with considerable care given to quality of data, length of time series, and reanalysis of tidal signals.
- (2) The BP altimeter differences are markedly superior to previous test datasets.
- (3) Motivation was to provide input to Detlef Stammer's tide-model comparison efforts. But the new dataset has additional applications.
  - Testing air tide models.
  - Detection of FCN resonance in diurnal earth tides.