

Precise Jason-2 absolute altimeter calibration by means of a microwave transponder

HAUSLEITNER⁽¹⁾, MOSER⁽¹⁾

DESJONQUERES⁽²⁾, BOY⁽²⁾, PICOT⁽²⁾, WEINGRILL⁽¹⁾, MERTIKAS⁽³⁾, DASKALAKIS⁽³⁾

(1) Austrian Academy of Sciences, Austria

(2) CNES, France

(3) Technical University of Crete, Greece

Microwave Transponder

Ku-band signal repeater

- Frequency: 13.75 GHz±300 MHz
- Antenna diameter: 42 cm
- Total system gain: 149 dB

Major advantages

- Stable point of reflection
- Coastal and inland altimeter measurements
- No influences from ocean dynamics

F Principle of Transponder Calibration

Conventional Method

- Measurement of the nadir range to the sea surface
- Complementary in-situ observations from GPS buoys, tide gauges, etc.

$$B = \left(h_{SAT} - h_{LSL}^{ALT}\right) - SSH_{tide\ gauge}$$

Transponder Method

 Measurement of the slant range to the transponder

$$B = (|\vec{r}_{SAT} - \vec{r}_{TRP}|) - r_{TRP}^{ALT}$$

Principle of Transponder Calibration

IWF

Gavdos Cal/Val Station

- Gavdos cal/val station
 - Tide Gauge, DORIS, Transponder
 - Jason-2 cross-over: 018D/109A
- TRP site equipment
 - Concrete base
 - Fabric housing with acrylic glass roof
- Electric power supply
 - Photovoltaic unit
- Remote operation
 - GPRS-Modem

Gavdos Cal/Val Station

- Gavdos cal/val station
 - Tide Gauge, DORIS, Transponder
 - Jason-2 cross-over: 018D/109A
- TRP site equipment
 - Concrete base
 - Fabric housing with acrylic glass roof
- Electric power supply
 - Photovoltaic unit
- Remote operation
 - GPRS-Modem

- Ocean return pulse
 - Regionally generated response
 - Brown modelled signals

Transponder – return pulse

- Characteristics of point target response
- Peak shaped signals

Jason-2 Altimeter Operation Modes

Poseidon-3 modes of operation/calibration

Tracking mode

• Loss of tracking mode due to sudden increase of land elevation

CAL-2 mode

- Low resolution (150 ms sampling)
- Complex handling

DIODE / DEM

- 20 Hz waveforms
- Simple handling
- Locally activated for each transponder overflight
- 104 bins @ 3.125 ns sampling

GWF Altimeter Range from DIODE/DEM Mode

DIODE/DEM generated transponder waveforms

- Defined reference distance given with the products
 - Reference bin number 32 \rightarrow Tracker range $r_{tracker}$
- Bin range computed from exact epoch time of TRP reflection
 - Calibration close to point of overflight \rightarrow Bin range r_{bin}
 - Calibration at outbound arc \rightarrow Bin range r_{bin}
- Altimeter range: $r_i = r_{tracker} + r_{bin} + \Delta r_{corr}$

Transponder Calibration Flow Chart

Transponder Waveform Retracking

Fitting methods for TRP return bin computation

- Gauss fit
- Center of energy
- Sinc–function
- Zero-padding

Altimeter Range Determination

• Approximation of individual calibrations (\approx 50 cals.)

- Determination of TRP return bin
- Polynomial fit to all cals.
 - Bin fitting residuals
 - Large residuals at overflight
 - Correlation with max. return energy
 - Iterative fitting process with ...
 - Inverse energy weighting
 - 3-σ outlier detection
 - Vertex defines PCA
 - Measure of timing bias

Altimeter Range Corrections

	Correctio	Source	
Altimeter	Altimeter Path Delay	Δr_{path}	GDR-T corr.
	Altimeter Phase Center	Δr_{cog}	GDR-T corr.
	DORIS USO Correction	Δr_{uso}	GDR
Transponder	TRP electronic delay	Δr_{elec}	HF Lab
	TRP geometric delay	Δr_{geom}	Manufacturer
	TRP signal delay roof	Δr_{pmma}	HF Lab
Propagation	lonosphere	Δr_{iono}	GIM model
	Dry troposphere	Δr_{dry}	GDR
	Wet troposphere	Δr_{wet}	AMR + ECMWF
Geophysical	Solid Earth tides	Δr_{solid}	GDR
	Pole tides	Δr_{pole}	GDR
	Ocean loading	Δr_{load}	GDR
misc.	Pseudo-Doppler	Δr_{dopp}	computed
	Pseudo Time-Tag Bias	Δr_{dat}	CNES

OST/ST Meeting - Venice, 2012

Robust fit to final residuals

- Inverse return power weighting
- Pass bias taken at PCA

Transponder Campaign

- 27 Passes
- 10/2010 01/2012

Discussion of Bias Results

- Differences wrt.
 Gauss fit
 - Sinc-function: <1cm</pre>
 - Zero-padding: <1cm</p>
 - Energy centroid: < 2.5 cm²
- No significant bias trend detectable

Discussion of Bias Results

Data products

- S-IGDR (MOE)
 - Latency: 2-3 days
- S-GDR (POE)
 - Latency: 60 days
- Final Poseidon-3 altimeter bias
 - 6.8 ±0.3 cm
 - Still unknown systematic effect

Fitting Method		S-IGDR-T				
		Mean $ar{x}$	Std. of mean $S_{ec{\chi}}$	Std. S _i	Median $\widetilde{\pmb{\chi}}$	
Gauss fit	[cm]	6.8	0.3	1.6	6.8	
Energy centroid	[cm]	5.7	0.4	2.1	6.0	
Sinc function	[cm]	7.1	0.3	1.8	7.1	
Zero padding	[cm]	7.0	0.3	1.7	6.9	

A new method of precise Jason-2 altimeter calibration using a microwave transponder Hausleitner et al., 2012, Marine Geodesy, Special Issue 3

Conclusion / Outlook

- Transponder method very suitable for precise altimeter calibration
 - Powerful applications for both inland and in coastal regions
 - High precision calibration may help to complement and validate conventional techniques
- Relevance for future missions
- Colocation of transponder and SLR facility

