Arctic Ocean Sea-Level Rise

<u>C.K. Shum¹, Chungyen Kuo², Yuchan Yi¹, Junkun Wan¹, Kuo-Hsin Tseng¹, Alexander Braun³</u>

¹School of Earth Sciences, Ohio State University, USA ²Department of Geomatics, National Chung Kung Univ., Taiwan ³Department of Geosciences, Univ. Texas at Dallas, USA

Ocean Surface Topography Science Team Meeting Venice-Lido, Italy

27-28 September 2012

NASA/DLR

ESA

20 years of progress in radar altimetry

CRYOSAT

ESA

Sea-Level Rise in the Arctic Ocean

- Technique approach
 - Conclusion

Arctic Ocean sea-level rise is an **important indicator** of the rapid environmental and ecological changes in the Arctic region, but it is not well observed: • The most accurate altimetry do not

Contemporary Arctic sea-level* studies

Prandi et al. [2012]	Reprocessed Duacs	3.6 mm/yr	de • fo			
Cheng et al., <i>in</i> <i>review</i> [2012]	AVISO Duacs v3.0	1.8 mm/yr	a Q Q			
	MyOcean V2p	3.7 mm/yr				
	RADS	0.9 mm/yr	•			
	SODA	0.4 mm/yr				
Other Arctic sea-level studies:						

- completely cover the Arctic Ocean
- Seasonal or permanent sea-ice coverage egrades Arctic altimetry SSH accuracy
- Fidelity of mean sea surface model used r altimetry repeat-track analysis
- Analysis of updated multi-satellite Itimetry (ERS-1, ERS-2, Envisat, GFO, Cryosat-2, mostly from RADS), tide auges, and other data (e.g., GIA models, GRACE) to estimate Arctic sea-level trend
- Propose adaptive radar altimeter etracking techniques [e.g., *Tseng et al.,* 2012] for possible improvement of Arctic ltimetry SSH accuracy

-2+ mm/yr, ERS-2 [Scharroo et al. 2006]

1.1 to 2.7 mm/yr, multi-altimetry [Kuo, 2006; per. com]

*Averaged ~66-82°N

Arctic Ocean Sea-Level Gridding Based on Spatio-temporal Weighting of Multi-Altimetry Data

- Technique approach
- 0
- Conclusions

Moving-window averaging method based on spatial-temporal Weighting

$$wgt(r,dt)_{ji} = \frac{1}{\delta_{sat_{i}}^{2}} \exp(-3.34\frac{r_{ji}}{L}) \exp(-\frac{dt_{ji}^{2}}{T^{2}}) \cos(\phi_{j})$$

dt: time difference r: distance L: distance scale φ_i : latitude of data T: time scale ^osati</sub>: Standard deviation of SSHA for each mission

Effects of Glacial Isostatic Adjustment on Arctic Sea-Level Trend Estimates

- ✓ Introduction
- Preliminary result
- ✓ Technique approach
- Conclusion

Ensembles of 13 GIA model predicted Relative Sea Level (RSL), tide gauge locations in red-dots

Effects of Glacial Isostatic Adjustment on Arctic Sea-Level Trend Estimates

- Preliminary result
- ✓ Technique approach
- Conclusion

Altimetry VS tide gauge time series

- ✓ Introduction
- Preliminary result
- ✓ Technique approach
- Conclusion

Averaged time series without IB in Nordic Sea

Averaged time series without IB in Kara Sea

Averaged time series with IB in Nordic Sea

Averaged time series of long-term tide gauge record and decadal costal altimetry for Nordic Sea (upper panel) and Kara Sea (down panel)

CryoSat-2 LRM and SAR Data Processing

- Preliminary result
- ✓ Technique approach
- Conclusion

Sea surface height (SSH) anomaly of the CS2 retracked LRM 1-Hz data (RADS).

SSH anomaly of CS2 GDR SAR mode data

CryoSat-2 LRM and SAR Data Processing

- Preliminary result
- ✓ Technique approach
- Conclusion

Averaging results of SSH of CS2 LRM and that of ENVISAT over a box area , (0°-30° E/70° N-80 ° N)

Only 1 Hz LRM data are provided in RADS

Multi-mission Altimetry Data Coverage 1992–2010

✓ Introduction

- Preliminary result
- Technique approach
- Conclusion

Color-coded coverage maps for altimetry (background) and tide gauge (color-coded circles). Data edited if <100 weeks

06

Sea-Level Trends Over the Arctic Ocean 1992–2010 (Preliminary)

✓ Introduction

- Preliminary result
- Technique approach
- Conclusion

1.1 mm/yr, 66~82⁰N (2.3 mm/yr, 60N~82N, 30W~100E)

1.5 mm/yr, ~66-82⁰N

Spatial variation of sea level trend estimates using multi-mission altimetry (background) and tide gauges (color-coded circles)

Sea-Level Trend Uncertainties Over the Arctic Ocean, 1992–2010 (Preliminary)

- Preliminary result
- Technique approach
- Conclusion

Estimated Sea-Level Trend in the Arctic Ocean 1992–2010

- ✓ Introduction
- Preliminary result
- Technique approach
- Conclusion

Multi-satellite altimetry (ERS-1, ERS-2, Envisat, GFO, Cryosat-2) for Arctic Region (60N~82N, 30W~100E)

Observed Arctic Ocean Mass Variations (Trend)

- ✓ Introduction
- Preliminary result
- ✓ Technique approach
- Conclusion

0

Both data set filtered with a 400 km radius. GRACE data set (RL04) desctriped, corrected using van der Wal GIA model and SLR geocenter

Retracking: case Study in Greenland

- ✓ Introduction
- Preliminary result
- ✓ Technique approach

3000

2500

2000

1500

1000

500

0

Conclusion

An example of 1D waveform modification for Jason-2 near Los Angles

Envisat passes and WOCE gauge site used as ground truth at Greenland east coast

Hypothesize that waveforms from the ice-covered ocean are similar to coastal ocean

Tseng et al. [2012], Coastal WS, 20 yr RA Symposium

Retracking: Case Study in Greenland

- ✓ Introduction
- Preliminary result
- Technique approach
- Conclusion

Envisat along-track variation of BC in

latitude during each cycle

Envisat along-track variation of height (ICE-1) in latitude during each cycle

50

cycle

60

70

80

90

40

along-track (ICE-1) SSH variation in latitude

unit: [m]

The off-nadir sea ice dominates the energy in the return waveform and leads to an **overestimate** of the range.

70.4

70.35

70.3

70.25

70.2

70.15

70.1

10

20

30

During **winter-spring** seasons, sudden drops of height measurements are commonly seen on the edge of sea ice floe.

Tseng et al. [2012], Coastal WS, 20 yr RA Symposium

57.5

57

56.5

56

- Preliminary result
- ✓ Technique approach
- Conclusion

Table 1. RMS of available pass/cycles over study region against hourlygauge data

	Cycle	ICE-1	OCEAN	SEA ICE	20%TR	20% TRmod
224	RMS [cm]	21	41	42	22	17
	Correlation	0.77	0.5	0.42	0.76	0.87
	Cycle gap	0	4	0	0	0
24	RMS [cm]	14	61	34	15	14
	Correlation	0.88	0.25	0.43	0.86	0.88
	Cycle gap	0	0	0	0	0
15	RMS [cm]	30	72	62	30	23
	Correlation	0.58	0.43	0.42	0.58	0.71
	Cycle gap	0	0	0	0	0