

59-Day Oscillations, β', and All That – or – Subtle S₂ Errors from Satellite Altimetry

Richard Ray NASA Goddard Space Flight Center

"S2 is our punishment." -Florent Lyard

OSTST meeting – Venice Sept. 2012

Mean Jason – Topex Sea-surface Height Differences as Function of Local Time

Jason-1 cal/val period Feb–July 2002

NOTE: Results are independent of tide corrections!

From OSTST meeting, Hobart, March 2007

Mean Jason – Topex SSH Differences as Function of Local Time

In T/P and Jason, these errors map mostly into ~60-day periods.

Sun-synch maps them into long periods.

From OSTST meeting, Hobart, March 2007

Mean Jason – Topex SSH Differences

Jason-1 CalVal Period

Updated Sept 2012 Topex: MGDR-B data Jason: GDR-C data GSFC Std1007 orbits Only corrections are: SSB and MSS

What are the implications for producing S₂ models from altimetry?

GOT Experiments Extracting S₂ Tides from Altimetry

	GOT4.7	GOT4.8	GOT4.9	GOT4.10
Uses TOPEX	\checkmark	\checkmark	\checkmark	
Uses J1-J2				\checkmark
Corrects S2 dry-trop		\checkmark	\checkmark	\checkmark
Applies T/P Cg			\checkmark	

All solutions otherwise made as consistent as possible (although some things have changed: e.g. editing & orbits).
All solutions use same prior tide model.
All solutions also use same GFO, ERS-1/2 data in shallows, polar seas.

New pelagic "ground truth" dataset

144 stations.

Only bottom-pressure stations.

No short time series - All > 90 days.

80% are one year or longer. 65% are two years or longer.

Many time series reanalyzed.

- 74 by me.
- 14 by Doug Luther.
- 27 by Proudman Lab. (via GLOUP database)

DART Tsunami Network Is Invaluable

But....

- 1. Data can be noisy (because of acoustic & satellite links?)
- 2. Small station movements over time

Red lines: Times of new deployments

Correcting tidal amplitudes when time series consists of *mean* values

amplitude error $=\frac{1}{T}\int_{-T/2}^{T/2}\cos(2\pi t/P)\,dt = (P/\pi T)\,\sin(\pi T/P)$

P =tidal period T =averaging interval

See, for example, Malin & Chapman, Geophys. J. Royal Astr. Soc., 19, 15, 1970

For hourly values, amplitude correction factors are:

Diurnal:	1.00286	Semidiurnal:	1.0115
Terdiurnal:	1.02617	Quarterdiurnal:	1.0472

Recent POL data: 15-minute means ASTTEX, KESS data: hourly means

DART data: 15-minute spot values Old IAPSO data: ????? RMS differences (cm) model GOT4.7

RMS Differences (cm) S2 Bottom pressure vs. Altimetry

	GOT4.7	GOT4.8	GOT4.9	GOT4.10
None	1.11	1.00	0.99	0.98
Haurwitz-Cowley analytic	0.56	0.36	0.47	0.35
ECMWF 6-h (Ray-Ponte)	0.56	0.36	0.47	0.34
ECMWF 3-h*	0.58	0.36	0.49	0.32
MERRA*	0.50	0.31	0.40	0.32
NCEP CFSR*	0.70	0.50	0.60	0.45

* Courtesy J.-P. Boy

Based on 37 tropical BP stations.

Bootstrap uncertainty of RMS values ~ 0.03 cm

S2 Vector Differences GOT4.8 - GOT4.10

Basin-scale differences approaching 1 cm.

Summary Statements

- 1. Jason and Topex are inconsistent at S2, at the level of 5-10 mm, independent of Topex Cg correction. Applying current Cg correction makes inconsistency worse.
- 2. Testing S2 tide models is difficult because of confounding effects.
- 2. GOT4.8 and 4.10 are more accurate S2 models than 4.7 or 4.9, but I do not know whether 4.8 or 4.10 is better.
- 3. GOT4.7 is consistent with T/P MGDR-B (without Cg).

Questions

- **1. What Cg correction should be used for T/P?**
- 2. What S2 model(s) are recommended for altimeter corrections?
- 3. Is using different S2 models for Jason vs Topex acceptable? (otherwise we must live, for now, with 'large' 59-d oscillations in MSL)
- 4. What should the tidal community do???

Backups

Old 102-station Deep-ocean Tidal Validation Dataset

Constructed mainly by David Cartwright and Christian Le Provost Used by Shum et al (JGR, 1997) and many others.

Best altimeter-based tide models have $M_2 RMS = 1.5 cm$.

Detection of air tides in BP-altimeter differences

RMS Differences (cm) with respect to GOT4.7

	P1	S 1	K1	T2	S2
Before removing air tides from BP	0.188	0.454	0.276	0.151	1.083
After removing air tides from BP	0.196	0.291	0.254	0.132	0.567
Bootstrap 1-σ	0.011	0.018	0.019	0.008	0.034

Major air tides (amplitude ~ 1 mb) are S1, S2. Seasonal sidelines are P1,K1 and T2,R2. Air-tide model based on 3-hr ECMWF. RMS based on 32 tropical stations. Technique does not work for R2 because of no valid altimeter estimate.

Air tide clearly detected for S1, T2, S2.

S2 Barometric Tide

