

Global Jason-2 Data Quality Assessment including first results of GdrD reprocessing

S. Philipps & H. Roinard, M. Ablain, G.Valladeau (CLS) N Picot (CNES)

http://www.cls.fr

Gdr-T	1-145		
Gdr-D 1 - 36	76 - 148		
Igdr-C	1-149	150-154	Igdr-D

- Overview:
 - Analysis of missing and edited measurements
 - Analyze altimeter and radiometer parameters
 - Assess Sea Surface Height (SSH) performances and consistency at temporal scales less than 10 days
 - Assess along-track Sea Level Anomaly (SLA) performances and consistency
 - Stability of Mean Sea Level

Evolutions between GdrT/ GdrD

CENTRE	Standard	Product Version « T »	Product Version « D »
	Orbit	CNES POE standard C	CNES POE standard D
	Jason-2 microwave radiometer parameters	Using ARCS	ARCS+ new calibration coefficients + enhancement in coastal regions + correction of 34 GHz anomaly
	Sea state bias model	Empirical model derived from JA1	New look-up table, derived from Jason-2 data
	Mean Sea Surface	CLS01	CNES CLS 2011
	Tide Solution 1	GOT00.2	GOT4.8
	Altimeter Wind	derived from Jason-1	Same table, but the inputs differ (JA2 sigma0 biased to align it to JA1 one's)
	Update of the altimeter characterization file		 more precise PRF value Bias of 18.092 cm applied on range (corrects the value of the distance between CoG and the reference point of the altimeter antenna) Antenna aperture angle now 1.29 deg MQE setting is applied
	Other		• the origin of the constant part of the time tag bias was found and is directly corrected in the Gdr-D datation.

To verify data coverage, systematic monitoring of percentage of missing ocean data is performed. Verification is done, to assure that reprocessed Gdr-D data have equivalent data coverage as Gdr-T

Missing measurements

- Excellent data availability for Jason-2, only few missing measurements over ocean, mostly due to:
 - Planned uploads/ calibrations
 - Acquisition station problems
- Gdr-D : equivalent data availability as for Gdr-T

Not all available data are useful for science applications. Therefore an editing procedure is applied.

- using flags (sea ice flag)
- using thresholds on altimeter and radiometer parameters

Percentage of edited measurements is monitored.

Edited measurements

- Percentage of edited measurements show an annual signal due to ice coverage
- Very few measurements edited due to anomalies
- Gdr-D edits slightly more measurements (0.1%) than Gdr-T due to use of MQE threshold in 20 Hz to 1 Hz compression => more data at default value in regions with disturbed waveforms due to sea state (rain cells, ...)

http://www.cls.fr

Monitoring of Parameters

Monitoring of altimetric parameters is very important to

- Verify stability of measurements
- Detect anomalies (jumps, drifts)
- Monitor natural evolution of parameters

Comparison between Gdr-D and Gdr-T are done

Monitoring of parameters

Altimeter wind speed

- Jason-2 Gdr-T wind speed is slightly higher by about 0.4 m/s than Jason-1 one's
- During formation flight phase (cycles 1 -20), Jason-1 minus Jason-2 Gdr-T wind speed show regional differences
- JA1 minus JA2 Gdr-D wind speed much more homogeneous (bias reduced to 0.07 m/s).

Jason-1 - Jason-2 Gdr-T

Monitoring of Parameters

- A new sea state bias table is used for Gdr-D data :
 - It differs by about 3 cm from the GdrT sea state bias. Same behavior for Igdr's
 - Regional GdrD/GdrT differences
- GdrD SSB model was calculated with a different approach for low sea states (less stringent editing applied) than the Jason-1's one.
 GDR-T

Stability of radiometer wet troposphere correction

- Radiometer Ecmwf model wet troposphere correction shows:
- drifts and jumps in lgdr
- the jumps and most of the drifts are corrected in GDR-T with the ARCS system
- AMR recalibrated for GDR-D
 -> evolution of ~1.5 mm over
 4 yr between GDR-T and
 GDR-D
- JPL provided for GDR-D new radiometer wet troposphere correction with climate stability till cycle 113
- Cycles 114 140 intermediate quality
- > cycle 140: operational quality distr

SSH performance and consistency

In order to verify the quality of the sea surface height: • coherence of ascending / descending SSH differences at crossover points is monitored

Spatial distribution at crossovers

- SSH performances at crossovers are good, but mean is slightly negative and shows geographically correlated patterns (Positive in North Atlantic, negative in South Atlantic)
 - quite strong for IGDR
 - reduced but still visible for GDR-T
 - almost disappeared for GDR-D (no longer systematically negative)

- Related to orbit computation
- Very homogeneous, due to:
 New POE-D
 Correction of the time tag bias in GDR-D

SSH performances and consistency

Temporal evolution of asc/desc SSH differences

- Cyclic monitoring of mean SSH differences at crossovers are good, but:
 - Show a periodic 120 day signal, related to orbit
 - Are generally negative (reveals systematic ascending/descending differences) •
 - Improved with GDR-D data •

Selecting data with $||atitude|| < 50^\circ$, bathymetry < -1000m, low ocean variability (<20cm)

Along-track Sea Level Anomaly

Evolution from Gdr-T to Gdr-D

- Difference of -18.2 cm between GdrT and Gdr-D (mainly due to correction of range bias, more precise PRF, SSB)
- There also regional differences (due to orbit, SSB, MSS), which intensify over time (due to orbit)
- Difference Jason-2/Jason-1 before reprocessing: 7.6 cm, -10.6 cm after reprocessing (computed using AVISO method, corrections applied)

Along-track Sea Level Analysis

Global Mean Sea Level trend

- 2.5 year of reprocessed data is quite short for GMSL trend computation
- Gdr-D SLA trend shows an increase of about +0.3 mm/yr versus Gdr-T trend
- Comparison to Tide-gauge suggests an homogenization (-0.8 mm/yr -> -0.3 mm/yr)
- Results have to be confirmed after the availability of the whole time-series in Gdr-D

Comparison between Jason-1 and Jason-2 GMSL

- Global Mean Sea Level computed over common period of Jason-1 and Jason-2 (~3.5 years (July '08 -> February '12) shows differences of about 0.4 mm/yr
- Jason-1 minus Jason-2 GMSL differences seems to reveal a change of behavior around JA2 cycle 069
- 0.4 mm/yr trend difference value is not significant over such a short time period due to strong interannual signals, but this difference will likely be increased after Jason-2 GdrD reprocessing

Summary

- Jason-2 has excellent data availability, as well as in Gdr-T, as in Gdr-D
- Jason-2 altimeter parameters show very good quality. Due to reprocessing of Gdr-D, most radiometer and altimeter parameters have changed between GdrT and Gdr-D. The Gdr-D parameters show improvements or equivalent quality as Gdr-T parameters.
- SSH performances at crossovers are good, the geographically correlated patterns observed with Gdr-T are strongly reduced for Gdr-D.
- Gdr-D products are corrected for the pseudo datation bias -> hemispheric north/south bias disappears
- Impact of GDR-D parameters/corrections on GMSL due to :
 - Orbit : low global impact (-0.1 mm/yr), strong regional impact (homogenization of asc/dsc MSL trends)
 - Radiometer: global impact of + 0.4 mm/yr

Gdr-D reprocessing is still on-going. Results have to be confirmed after the completion of reprocessing

http://www.cls.fr

See also :

Poster n° 8 "Global Jason-2 Data Analysis of Reprocessed Gdr-D Products"

Report ftp://avisoftp.cnes.fr/AVISO/pub/ jason-2/documentation/gdr_d_calval_report/ JA2_GDR_D_validation_report_cycles1to20_V1_1.pdf