

Global Calibration and Validation of the Jason-2 GDR-D Products

Shailen Desai and Bruce Haines Jet Propulsion Laboratory, California Institute of Technology

September 27, 2012

© 2012 California Institute of Technology. Government sponsorship acknowledged.

- Comparisons between version "D" and "T" Jason-2 GDR products.
 - What changed?
- Comparisons between MLE-4 and MLE-3 altimeter parameters on GDRD.
- Emphasis on sea surface height component measurements.
 - Characterize temporal and spatial differences.
 - Consider 103 repeat cycles, 1-18, 20-36, 77-79, 81-145.
 - Use sea surface height crossover differences to evaluate relative accuracy.

- GDRD applies corrections that lengthen range by ~156 mm:
 - Antenna reference point (Desjonquères): Lengthen range by 181 mm.
 - Truncation of Pulse Repetition Frequency (CNES): Shorten range by 25 mm

- Sea state bias model derived from GDRD altimeter data (N. Tran).
 - Using "correct" wind speeds after 0.32 dB calibration bias applied to sigma0.
 - Calibration bias to level to Jason-1 sigma0 for optimal use of Jason-1 wind speed model.
 - GDRD-GDRT Sigma0 = -0.15dB. (Jason-2 GDRT-Jason-1 Sigma0 = -0.16 dB).
 - GDRT used SSB model derived from Jason-1 data.

September 27, 2012

- Bias results from relative biases in Sea State Bias models.
 - Ku-Band Iono = $0.1798*[(R_{Ku}+SSB_{Ku}) (R_{C}+SSB_{C})]$
 - GDRD lono. = GDRT lono. + 0.1798*[(-154+31) (-152+65)] = -6.4 mm
 - Reduces Jason2 Jason1 ionosphere bias to +2.4 mm.
 - Jason2(GDRT)-Jason1(GDRC) = +8.8mm

- Climate-quality recalibration for cycle 1-113 (S. Brown).
 - ARCS-quality recalibration for cycles 114-140.
- Operational calibration by "ARCS" for cycle 141 onward.
- Drift between GDRD and GDRT for cycles 1-145 = -0.4 mm/yr.

Quantity	Bias (mm)	Drift (mm/yr)
Orbit-Ku Range – MSS	-154	-0.20 +/- 0.04
-Sea State Bias	-31	-0.07 +/- 0.02
-lonosphere	6	0.01 +/- 0.01
-Radiometer Wet Troposphere	0	0.39 +/- 0.02
-Dry Troposphere	0	0
=Sea Surface Height	-179	0.13 +/- 0.09

Geographical Differences, GDRD-GDRT: Cycle 91

- Spatial and differences dominated by changes to POE.
 - Geographically correlated orbit error.
 - Range differences primarily biases.
- Sea state bias differences correlated with differences in SWH.

Time Tag Bias in GDRT

- Time tag bias in GDRT ranges (250 microsec) clearly observed when using JPL's orbit (CNES).
 - Clear hemispherical dependence in average SSH crossover differences.
 - Masked by geographically correlated orbit error in GDRT POE.

- Time tag bias explained by difference between time of emitted and received echo (CNES).
 - Also affects Jason-1 GDRC (corrected with "pseudo-datation bias").
- Correct time tags used in GDRD.

- GDRD significantly reduces SSH crossover variance.
 - Average variance reduction = 199 mm^2 .

- JPL GPS Orbit provides lower crossover variance than POE (GDRT or GDRD)
 - 142 mm² lower for GDRT, and 60 mm² lower for GDRD.
 - GDRD POE has better agreement with JPL orbit, than GDRT POE.
- ~40% of variance reduction (GDRT to GDRD) from improvements to POE.

- GDRD reduces crossover variance globally.
- GDRD with JPL orbit provides additional crossover variance reduction globally.
 - Remaining orbit error in GDRD POE.

- Simultaneously fit average, drift, and annual to orbit differences between GDRD POD and JPL GPS orbit using 103 repeat cycles.
- Peak-to-peak orbit differences +/- 1 cm.
- Geographically correlated drift (+/- 2.5 mm/yr).

- MLE-3 sea state bias models (Ku and C) appear to be at same absolute level as GDR-T MLE-4.
 - E.g. GDRD MLE3 SSB GDRT MLE4 SSB Level ≈ 0
 - Results with MLE-3 ionosphere also being at GDR-T Level.
- SSH variability is primarily from differences in Ku-band range.
 - Standard deviation = 2 cm.

September 27, 2012

- On average:
 - MLE3 > MLE4 crossover variance. (+23 mm²)

JPL Orbit: MLE3 – MLE4 Global average: +16 mm²

- GDRD is significant improvement over GDRT.
 - 200 mm² in SSH crossover variance reduction.
 - Biases in range and SSH resolved.
 - Margin for improving the POE.
 - 60 mm² additional SSH crossover variance reduction when using JPL GPS orbit with GDRD.
 - Geographically correlated relative drift between GDRD POE and JPL GPS orbit.
 - Global average of -0.1 mm/yr.
- On average, GDRD MLE3 data have slightly higher SSH crossover variance (16 mm²)
 - MLE3 sea state bias models at the same absolute level of GDR-T products.
 - Causes MLE3 SSH to be biased +3 cm from MLE4 SSH.

Back-Up Slides

• GDRD POE agrees closer to JPL's GPS orbit.

Mean of SSH Crossovers Differences

- Primary variability from orbit and/or range differences.
 - Range differences are primarily biases.
 - Orbit differences are larger contributor.

Standard Deviation of MLE3-MLE4

• SSH variability between MLE3 and MLE4 SSH primarily from Ku-Band range.