Global Cal/Val of CryoSat-2 LRM and SAR Data over Oceans

Remko Scharroo^{1,2} Walter Smith², John Lillibridge², Eric Leuliette² ¹Altimetrics LLC ²NOAA/NESDIS, Laboratory for Satellite Altimetry

CryoSat-2 Refresher

- NOAA's involvement in CryoSat-2
 - NOAA wanted to compute near-realtime winds and waves from CryoSat-2 for 2011 Hurricane season.
 - Existing ESA Fast-Delivery Level 2 product had vastly incorrect backscatter and SWH estimates. *Fixed since Feb 2012.*
 - At NOAA we built our own retracker for Level 1B waveform data.
 - We are now delivering winds and waves every half hour to the National Hurricane Center.

Scatterometers showing on the NAWIPS display

Altimeter SWH in feet (9 Jan 2012)

CryoSat-2 Operating modes

• LRM

- "Conventional Altimetry"
- Fast-delivery (FDM) or delay-time (30-day)
 (LRM) products

• SAR

- "Synthetic Aperture"
- Increased along-track resolution.
- Quite different from "conventional altimetry"
- Echoes can be
 "reduced" to LRM mode
 from FBR product

SARIN

- As SAR, but including cross-track resolution
- Not yet investigated

Results and Validation

Cycle maps

- All data (ocean and land)
- Ascending and descending separately
- Two overlapping cycles of Jason-1 and -2 (15 days total)
- One subcycle of CryoSat (29 days)

Histograms

- "Good" ocean data only
- Normalised by mode

CryoSat L1B – Backscatter

sig0 (lrm1r) - subcycle 016 - 2011/06/16 - 2011/07/15

CryoSat L1B – Std Dev of Backscatter

sigsig0 (Irm1r) - subcycle 016 - 2011/06/16 - 2011/07/15

Jason – Std Dev of Backscatter

sigsig0 (j1j2) - cycles 349/110 - 2011/06/22 - 2011/07/07

Envisat – Std Dev of Backscatter

sigsig0 (n1) - cycle 104 - 2011/06/24 - 2011/07/24

CryoSat 1B – Backscatter fixes

- "Misinterpretation" on ESA side
 - Wrong implementation of corrections to Automatic Gain Control
 - Either applied backwards (e.g. 0.25 dB instead of -0.25 dB)
 - Or applied to the wrong values (e.g. correction for 32 dB applied to 30 dB and vice versa)
 - Drift correction of ~0.03 dB/month applied with the wrong sign (decreasing instead of increasing the backscatter)
 - Or combination of those
 - Caused "lopsided" distribution
- "Misinterpretation" on NOAA side
 - Did not account for scaling of waveform in Analogue-Digital Converter
 - Hence increased noise of 20-Hz values

CryoSat L1B – Std Dev of Backscatter

sigsig0 (Irm1r) - subcycle 016 - 2011/06/09 - 2011/07/06

24-29 September 2012 | Venice, Italy

Retracking over St Helena box

- AGC is 1 dB lower during SAR mode. Why?
- Leading edge of waveform somewhat more blurry during PLRM

SWH Comparison with Jason-2

Crossover data

- CryoSat-2 vs Jason-2
- Maximum 2-day time interval
- Too few crossovers between LRM and Pseudo-LRM

Hybrid Sea State Bias Model

Direct method, enhanced

- Sea level anomalies gridded in sigma0-SWH space
- Fit BM4 model
- Blend in residuals

Merging LRM and PLRM (1)

Merging LRM and PLRM (2)

PLRM – Sea Level Anomaly

sla (lrm1p) - subcycle 029 - 2012/06/11 - 2012/07/08

LRM – Sea Level Anomaly

sla (lrm1c) - subcycle 029 - 2012/06/11 - 2012/07/08

LRM+PLRM – Sea Level Anomaly

PLRM – Significant Wave Height

swh (lrm1p) - subcycle 029 - 2012/06/11 - 2012/07/08

LRM – Significant Wave Height

swh (lrm1c) - subcycle 029 - 2012/06/11 - 2012/07/08

LRM+PLRM – Significant Wave Height

swh (lrm1r) - subcycle 029 - 2012/06/11 - 2012/07/08

PLRM – Backscatter

sig0 (lrm1p) - subcycle 029 - 2012/06/11 - 2012/07/08

LRM – Backscatter

sig0 (lrm1c) - subcycle 029 - 2012/06/11 - 2012/07/08

LRM+PLRM – Backscatter

sig0 (lrm1r) - subcycle 029 - 2012/06/11 - 2012/07/08

Sea Level (cm) Crossovers

sla crossover rms (c2r-j2)

sla crossover rms (c2r-j1)

	Mean	Std
LRM – Jason-1	-0.96	6.35
PLRM – Jason-1	-1.73	6.27
LRM – Jason-2	-0.57	5.30
PLRM – Jason-2	-1.46	5.87
Jason-1 – Jason-2	+0.37	6.40

SWH (m) Crossovers

swh crossover rms (c2r-j2)

swh crossover rms (c2r-j1)

90 N -				· ··		
60°N -	1.0			645		1
30°N -						
0° -	S					
30°S -		ATY:	8 . A	(20)	141	a states
60°S -	12.516		100		10.0	MISSIN.
90°S -	180°	120°W	60°W	0°	60°E	120°E
						m m
	0.0	0.5	1.	.0	1.5	2.0

	Mean	Std
LRM – Jason-1	+0.12	1.23
PLRM – Jason-1	-0.04	1.24
LRM – Jason-2	+0.10	1.20
PLRM – Jason-2	-0.03	1.22
Jason-1 – Jason-2	-0.01	1.21

Backscatter (dB) Crossovers

sig0 crossover rms (c2r-j2)

sig0 crossover rms (c2r-j1)

	Mean	Std
LRM – Jason-1	-0.42	1.83
PLRM – Jason-1	+0.13	1.92
LRM – Jason-2	-0.16	1.71
PLRM – Jason-2	+0.33	1.87
Jason-1 – Jason-2	+0.27	1.72

Conclusions

Retracked LRM L1B data

- Retracking can be performed with MLE3 with a priori off-nadir angle from star-tracker information.
- Retracked L1B data shows excellent quality.
- Crossovers with Jason-2 shows accuracy slightly better than Jason-1, despite lack of radiometer.
- Retracked Pseudo-LRM data
 - After stacking SAR echoes, same retracking.
 - No apparent bias with LRM data.
 - Higher levels of 20-Hz noise, as expected.
 - Still, 1-Hz data quality is comparable to LRM data

• However ...

Current ESA data policies do not allow us to release these valuable PLRM data

Thank You

