The Use of NRT Altimeter Wind and Wave Products at ECMWF

Saleh Abdalla, Peter Janssen and Jean-Raymond Bidlot

ECMWF, Reading, UK

Slide 1

© ECMWF, 2012

Outline

Use of NRT Altimeter Products at ECMWF.

- **Operational Altimeter Data Reception at ECMWF.**
- Quality of NRT Significant Wave Height (SWH).

© ECMWF, 2012

- Impact of NRT Altimeter SWH Assimilation.
- Quality of Surface Wind Speed.
- Conclusions

Slide 2

Ocean Surface Topography Science Team Meeting, Venice, Italy, 27-28 Sep. 2012

Use of Altimeter Products at ECMWF

- Only **NRT** Products (within few hours) are used.
- **Data assimilation:** To correct the model analysis (i.e. initial conditions) in order to improve the model forecast:
 - Significant Wave Height.
 - (- Sea Surface Height).

Model verification: To assess the model performance and changes:

- Significant Wave Height;
- Surface wind speed; and
- Atmospheric Water Vapour Content.

© ECMWF, 2012

Slide 3

Latency of Wind & Wave Observations

- NRT data (should be received within few hours).
- Data reception delay with respect to the major synoptic time at the centre of each 6-hour time window.
- Two cut-off times after the end of the 6-hour window:
 - Early Delivery (ED): 1 hour.
 - Delay Cut-off (DC): 5 hours for 06 and 18 windows, and ~11 hours for 00 and 12 windows.

• From 01 January to 31 December 2011.

Monitoring of NRT Altimetry Data – Reception

Quality of Altimeter NRT (Jason-1 OSDR and Jason-2 OGDR and Envisat FDMAR) SWH

Against: - ECMWF wave model first-guess

- GTS in-situ wave measurements

Envisat SWH is almost unbiased after 1 Feb. 2010.
 Jason-1 SWH is slightly high (by about 4%).
 Jason-2 SWH is almost unbiased.

 Envisat SWH is very good (except for slight degradation at low values after 1 Feb. 2010).
 Jason-1 SWH product is very good.

© ECMWF, 2012

Jason-2 SWH is even better.

Ocean Surface Topography Science Team Meeting, Venice, Italy, 27-28 Sep. 2012

Slide 7

Jason-2 SWH Comparison against ECMWF Wave Model - 2011

Ocean Surface Topography Science Team Meeting, Venice, Italy, 27-28 Sep. 2012

Slide 8

© ECMWF, 2012

Global comparison between Altimeter and ECMWF wave model (WAM) first-guess SWH values (From 02 February 2010 to 01 February 2011)

ECMWF

Ocean Surface Topography Science Team Meeting, Venice, Italy, 27-28 Sep. 2012

Jason-2 and ENVISAT Ku-band SWH St. Dev. Diff. as functions of SWH

Impact of the Assimilation of Altimeter Significant Wave Height

 NRT Altimeter SWH products have been assimilated operationally at ECMWF since:

- 22 October 2003 ... for ENVISAT FDMAR;
- 1 February 2006 ... for Jason-1 OSDR;
- 10 March 2009 ... for Jason-2 OGDR.

Impact of the Assimilation of Altimeter Significant Wave Height (Cont'd)

- The impact is positive.
- Jason-1 assimilation was paused when:
 - was in tandem with Jason-2 after 10 Mar. 2009; &
 - after 1 Apr. 2010, but will be resumed soon.
- Communication loss with ENVISAT in April 2012.

Slide 12

© ECMWF, 2012

Ocean Surface Topography Science Team Meeting, Venice, Italy, 27-28 Sep. 2012

Slide 13

Impact of Jason-2 SWH assimilation on the model SWH forecast errors in the Tropics

Verified against Envisat & Jason-1

(From 01 August to 21 September 2008)

No data assim. Jason-2 alone

Jason-2 & Envisat

Jason-1 & Envisat

-0.01

© CECMWF, 2011

108

120

Impact of Jason-1/2 SWH assimilation on the model peak wave period forecast errors

(At all buoys; From 01 Aug. to 21 Sep. 2008)

Impact of Alt. SWH assimilation – Model Forecast

Impact of Jason-2 SWH assimilation on the model **500 hPa Geopotential Height forecast errors in the Northern Hemisphere**

(w.r.t. operational analysis, 1 August – 30 September 2008)

Impact of the Assimilation Data from 3 Altimeters versus 2

- Use of data from Jason-2 and ENVISAT compared to adding Jason-1 to them.
- The use of data from 3 Altimeters:
 - → Positive impact;
 - → More Resilient data stream.

Impact of Jason-1 SWH assimilation on top of Jason-2 + ENVISAT

(At all buoys; From 10 Feb. to 18 May 2009)

(Number of collocations)	SWH (38174)		Mean W. Period, T _z (28986)		Peak W. Period , T _p (23288)	
	Bias (cm)	SI (%)	Bias (s)	SI (%)	Bias (s)	SI (%)
Jason-1 + (Jason-2 + ENVISAT)	- 3.5	14.7	- 0.168	10.8	0.080	15.6
Jason-2 + ENVISAT	- 3.7	15.1	- 0.172	10.9	0.082	15.7
Slide 18	© ECMWF, 2012					

Quality of NRT Altimeter Surface Wind Speed and Backscatter Products

- Consistency and stability of backscatter.
- Verify wind speed against:
 - ECMWF model analysis
 - GTS in-situ wind measurements

Used for model diagnostics and model-change verification.

Altimeter Backscatter Monthly Global Mean

Rather stable with few issues:

- slight drop in all altimeters towards the end of 2009.

- reduction trend in Jason-1 backscatter.

Altimeter Backscatter Drop in Late 2009

- ENSVISAT Ku-Band backscatter drop ~ 0.15 dB
- Jason-1 Ku-Band backscatter drop ~ 0.08 dB
- Jason-2 Ku-Band backscatter drop ~ 0.08 dB

Ocean Surface Topography Science Team Meeting, Venice, Italy, 27-28 Sep. 2012

Jason-2 Wind Speed Comparison against ECMWF IFS Model - 2011

ECHWF

Global comparison between Altimeter and ECMWF analysis wind speed values

(From 02 February 2010 to 01 February 2011)

Global comparison between altimeters and insitu (buoy) surface wind speed values

(From 01 Sep. 2009 to 31 Aug. 2010)

MWF

Time Series of Jason-1 Wind Speed Bias wrt ECMWF Model

Global Comparison between Jason-1 and ECMWF Model Wind Speed for 1 Day (09 UTC 10 Jun – 09 UTC 11 Jun 2012) Typical daily scatter plot

Typical Along-Track Jason-1 and Model Wind Speed during the Anomaly Duration.

Conclusions

- NRT Altimeter (ENVISAT FDMAR, Jason-1 OSDR and Jason-2 OGDR) wind and wave products are continuously monitored and verified at ECMWF.
- Significant wave height (SWH) products from the three altimeters are very good.
- Assimilation of NRT SWH
 positive impact on the model analysis and forecasts.

Conclusions (Cont'd)

Assimilating SWH from 3 Altimeters (Jason-1, Jason-2 and ENVISAT):

- shows improved positive impact; and
- adds value to the availability of the data.

 SWH, wind speed and water vapour data products from Altimeters are invaluable for model verification and assessment.

