Assimilation of altimeters and ASAR wave data in the wave model MFWAM : A preparation study to the CFOSAT mission

L. Aouf ⁽¹⁾, J-M. Lefèvre⁽¹⁾, D. Hauser⁽²⁾ and C. Tison⁽³⁾

⁽¹⁾ Météo-France, Toulouse
⁽²⁾ LATMOS, IPSL/CNRS, Paris
⁽³⁾ CNES, Toulouse

OSTST 2012, Venice, 27-28 September 2012

Outline

- 1- Motivation
- 2- Brief description of the new operational forecasting system
- 3- Main results on 1-year use of the assimilation system
- 4- Optimization of the assimilation scheme
- 5- Assimilation runs with synthetic SWIM wave spectra (CFOSAT mission)
- 6- Conclusions and future works

Relevance of using good swell conditions in the generation zone (Hurricane KATIA 2011)

Motivation

Assessment of the assimilation system in the new wave model MFWAM (improving the wave forecast)

Evaluate the contribution of each instrument of satellite wave observations (SAR, altimeters,)

Perform OSSE's (synthetic data from SWIM instrument : in preparation to the CFOSAT mission. As wavelength cut-off is better than the ASAR one, it is needed to evaluate the impact on sea state forecast.

The assimilation of ASAR L2 wave spectra

- Available on the GTS of meteorological services since August 2010
- Robust Quality control procedure for ASAR wave spectra (Aouf et al. 2008) Threshold intervals for signal parameters (3<snr <30, NVI ASAR imagettes 1-1.6 and wind speed)
- Use of a variable cut-off for SAR wave spectra depending on the azimuthal cut-off, the orbit track angle and the wave direction from the model

Description of the assimilation of ASAR L2 wave spectra

New wave forecasting system of Meteo-France:

 Global version of the model MFWAM is running at 55 km resolution driven by wind forcing from IFS/ECMWF and ARPEGE, the grid is irregular in longitude

- The wave spectrum resolution is 24 directions and 30 frequencies
- The assimilation uses altimeters (Jason-2 and Ra-2) and ASAR L2 wave spectra since 17 March 2011. the time step is 6 hours and the analyses are produced 2 times a day (R0 and R12)
- The output of 32 mean wave parameters is produced every 3 hours and archived in the MF data base (BDAP)
- Boundary conditions are produced for regional models

Comparison MFWAM operational with Sig. Wave Height and Tp from buoys

April to December 2011

Output from MFWAM operational forecasting system Validation of with Jason-1 Sig. Wave height (off assimilation)

Since starting the assimilation of ASAR directional wave spectra and both Jason-2 and Ra2 atlimeters wave heights

Statistics for different ocean basins

Optimization of the assimilation scheme

- Adjustment of the correlation legnth and the distance of influence of the ASAR wave spectra
- Adjustment of threshhold level for combining two peaks of partitions when they are close to each other
- Smoothing of the filling gaps between the analysed partitions in order to reconstruct the analysed wave spectrum
- Reject the partition when the wave height of the partition is less 30 cm in order to avoid noisy spectrum
- Run test of 3 months (April to June 2011)

Optimization of the assimilation scheme Validation with Jason-1 Sig. Wave height (off assimilation)

MF-OPTI : MFWAM with the optimized assimilation scheme MF-NOASSI : MFWAM without assimilation MF-ASSI-ALTI : MFWAM with assimilation of altimeters only MF-OPER : MFWAM operational (with assimilation of SAR and Ja2 and Envisat)

3 month test : April to June 2011

impact of the ASAR on peak wave period (Tp>12 sec)

MF-OPTI : MFWAM with the optimized assimilation scheme MF-NOASSI : MFWAM without assimilation MF-ASSI-ALTI : MFWAM with assimilation of altimeters only

3 month test : April to June 2011

Description of SWIM on CFOSAT

Ku-Band radar (13.2-13.6 GHz)

Multibeam (6 incidences 0-2-4-6-8-10°) alternatively illuminated within 218 ms

Scanning in azimuth (5.7 rpm)

Horizontal final resolution within footprint, after processing): 35 m in the look direction (18 km perpendicular)

Maximum scanning radius: 88 km (10° incidence)

Synthetic significant wave height from SWIM (time window 6 hours)

Example of 1-day coverage CFOSAT (SWIM instrument

Toujours un temps d'avance

Methodology of OSSE's

→ The rms errors of significant wave height of the first guess are about 18.2% in reference with altimeters

Random number to simulate SWIM instrument errors

Description of test runs

 Assimilation is performed during 1 cycle of CFOSAT (13 days) every 6 hours starting from 12 September 2011 at 12:00 (UTC)

Model resolution of 0.5° and wave spectrum in 24 directions and 30 frequencies

Several test runs :

MFWAM with synth wave spectra and SWH from SWIM (no instrument errors)MFWAM with synth. wave spectra and SWH from SWH from SWIM (with random SWH)	MFWAM with MF synth. wave sy spectra and fr SWH from SWIM and ASAR L2 wave spectra	WAM with nth. SWH om SWIM only WIM
---	--	--

Validation with the « truth » wave parameters and also with altimeters (Jason-2) and buoys

Assimilation of SWIM synthetic wave data : Validation with Jason-2 Sig. Wave height

Assimilation of SWIM wave products disturbed by random errors

Test run of 1-cycle CFOSAT tracks

Assimilation of SWIM synthetic wave data : Validation with Truth Sig. Wave height

Statistical analysis at Ja-1 and Ja-2 locations

High Lat : $|\Phi| > 50^{\circ}$ Intermediate ocean domain : 20° < $|\Phi| < 50^{\circ}$ Tropics : $|\Phi| < 20^{\circ}$

Test run of 1-cycle CFOSAT tracks

Assimilation of SWIM synthetic wave data : Validation with buoy peak period Tp

impact of using directional wave spectra

SWIM+SAR : MFWAM with assimilation of SWIM and ASAR (ENVISAT) SWIM : MFWAM with assimilation of synthetic wave spectra and Sig. wave heights SWH-only : MFWAM with assimilation of Sig. Wave heights only NOASSI : MFWAM without assimilation

Test run of 1-cycle CFOSAT

Impact of the assimilation of synthetic wave spectra and SWH from SWIM

Comparison with TRUTH significant wave height at Jason 1 & 2 orbit tracks

The impact of the assimilation of synthetic wave spectra : Forecast period

Swell wave height

Mean wave period

Difference between runs of MFWAM with and without assimilation

2-day forecast starting from 25 September 2011, by step of 6 hours

Conclusions

- → The assimilation system improves significantly the wave analyses (SI of SWH less then ~10% referring to altimeters)
- → The contribution of directional wave spectra in the assimilation is clearly showed for the peak period Tp>12 sec :
 - \rightarrow the use of ASAR improves the analyses by more than 20% (waiting for sentinel-1 and CFOSAT mission)
- → The assimilation of synthetic wave spectra shows the same trend of impact as for ASAR. The random error degrades slightly the the impact.
- \rightarrow The impact of the assimilation stays efficient until 3 days in the forecast period

Conclusions and future works

→ Use of synthetic wave spectra provided by FAWASSI (CNES simulator for SWIM) : more precise instrument errors

 \rightarrow Perform sensitivity tests with several wavelengths cut-off

m²s / deg

