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Tropical cyclone secondary circulation 
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Why couple a 3-D ocean model to a 
tropical cyclone (TC) forecast model? 
 To create accurate SST field for input into TC model 
 Evaporation (moisture flux) from sea surface provides 

heat energy to drive a TC, especially in storm’s core 
 Available energy decreases if storm-core SST decreases 
 Uncoupled TC models with static SST neglect SST 

cooling during model integration  high intensity bias 
 One-dimensional (vertical-only) ocean models neglect 

upwelling, which can impact SST cooling during model 
integration (e.g. Yablonsky and Ginis 2009, MWR) 
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Typical TC-ocean model coupling 
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Coupled TC-ocean forecast models 
operational at U.S. NOAA and Navy 

 Hurricane Weather Research and Forecast model (HWRF) 
 
 Geophysical Fluid Dynamics Laboratory model (GFDL) 

 
 GFDL model with Navy’s NOGAPS initialization (GFDN) 

 
 All 3 are coupled to Princeton Ocean Model (POM-TC) 
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Physics of storm-core SST change 

 
1) Vertical mixing/entrainment (Slide 7) 

 
2) Upwelling (Slide 8) 

 
3) Horizontal advection (Slide 9) 

 
4) Heat flux to the atmosphere (not shown):              smaller 

than 1, 2, and 3 except in shallow coastal areas 
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1) Vertical mixing/entrainment 

Wind stress → surface layer currents 
Current shear → turbulence 

Turbulent mixing → entrainment of cooler water 

Sea surface temperature decreases 

Subsurface temperature increases 
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2) Upwelling 

Cyclonic wind stress → divergent surface currents 
Divergent currents → upwelling 

Upwelling → cooler water brought to surface 
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3) Horizontal advection 

Preexisting cold pool is located outside storm core 
Preexisting current direction is towards storm core 

Ocean currents advect cold pool under storm core 
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Typical of  
Gulf of Mexico in 
Summer & Fall Typical of  

Caribbean in 
Summer & Fall 
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Why is the cold wake 
“not as cold” here? 

Answer: We must look  
under the ocean surface! 
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Subsurface (75-m) 
ocean temperature 
during Katrina & Rita 
 
Warm Loop Current 
water and a warm  
core ring extend far  
into the Gulf of Mexico 
from the Caribbean… 
 
Directly under Rita’s 
& Katrina’s track… 

Approximate Locations of Oceanic Features 
During Hurricanes Katrina and Rita (2005) 
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But… how do we know  
the locations of (& how 
do we assimilate) these  
features in real-time? 
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GDEM Data-assimilated 

How we modify GDEM T/S Climatology: 
Feature-based (F-B) modeling! 

• Look at  
  altimetry/obs 
• Define LC &  
  ring positions 
• Use Caribbean  
  water along  
  LC axis & in  
  WCR center 
• Make CCR 
  center colder 
  than environ. 
• Blend features 
  w/ env. & 
  sharpen fronts 

Altimetry 
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• Start with  
  GDEM T/S 

Or… define using real 
obs: e.g. AXBT 6 for  
LC and AXBT 13 (14)  
for WCR (CCR) 

Finally, assimilate GFS 
SST and integrate ocean  
model for 48 hours for 
geostrophic adjustment 
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4 TCHP; courtesy of Gustavo Goni, NOAA/AOML/PhOD 
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 Global 1/12 degree HYCOM model implemented 
operationally 10/25/2011. 

 Brand new model the size of the GFS implemented within two 
years, after 2 years of planning and developing partnership 
with Navy. NCODA initialization provided daily by Navy. 

 Application for hurricane modeling (HFIP) 
 Base of unified HWRF-HYCOM regionally coupled model for 

anywhere in the world. 
 Possible downstream use: 

 Simplified POM initialization (HWRF-POM).  URI Effort 
 Possibly OHC products. 

  
* Slide courtesy of H. Tolman (U.S. NOAA/NCEP/EMC) 

RTOFS-Global* 
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SST 

75-m T 

20111025 

RTOFS-Global Feature-based w/ GFS SST 
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75-m T 

RTOFS-Global Feature-based w/ GFS SST 

20111025 

SST 
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CCAR SSH 

Model SSH 

RTOFS-Global Feature-based w/ GFS SST 

20111025 
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X-section 

RTOFS-Global Feature-based w/ GFS SST 

20111025 

Model SSH 
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Developing a new MPIPOM-TC at URI 

1977 
pmod 

1994 
pom 

2004 
pom2k 

2012 
sbPOM 

2004 POM 
Users Guide 

1994 pom 
at URI 

2012 
POM-TC 

URI’s new 
MPIPOM-TC 

URI-based code development 

2012 HWRF 
Users Guide 

POM community code development 
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SST 

75-m T 

RTOFS-Global Feature-based w/ GFS SST 

(MPI)POM-TC: Hurricane Isaac (2012) wind stress 
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Hurricane Isaac (2012) AXBTs (courtesy Beth Sanabia, USNA) 
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AXBT 4: Both good AXBT 16: FB bad 

AXBT 27: HYCOM bad AXBT 29: Both bad 

Analysis courtesy of Melissa Kaufman, URI/GSO 
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OBSR = observed; GFDH = RTOFS-Global; GFDL = operational 

Coupled GFDL/(MPI)POM-TC: Hurricane Isaac (2012) 

Analysis courtesy of Biju Thomas, URI/GSO 
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Summary of initializing MPIPOM-TC 
with Global HYCOM RTOFS/NCODA 

 RTOFS-Global initialization is an alternative to feature-based initialization 
 
 A potential issue is differences between RTOFS-Global SST and GFS SST 

 
 MPIPOM-TC facilitates future developments (e.g. increased resolution, 

larger ocean domains, plug-and-play initializations, community support) 
 

 GFDN coupled model already uses NCODA T/S operationally for POM-TC 
initialization outside Atlantic basin where no feature-based model exists 
 

 Quality of initialization technique is largely dependent on quality of 
altimetry product(s) and method of altimetry assimilation into T/S fields 
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