Assessment of the first three generations of GOCE geoid model through their induced surface geostrophic currents

J. M. Sánchez-Reales, University of AlicanteO. B. Andersen, Danish Technological Unviersity

Bingham et al. 2011 Knudsen et al. 2011 Sanchez-Reales et al. 2012

Surface geostrophic current

 $(u_s, v_s) = (\text{East, North})$ surface current speed; Coriolis parameter $f = 2^*(\text{Earth rotation rate})^* \sin(\text{Latitude});$ DH = dynamic height = true height - geoid.

GOCE data

REL01 November 2009 to January 2010 (first 61-day cycle) REL02 November 2009 to June 2010 (~8 months of data) DEL03 November 2009 to April 2011 (~1.5 vears of data) X SPW (space-wise) REL03 November 2009 to April 2011 (~1.5 years of data)

	DIR	SPW	TIW
REL01	$N_{max} = 240 \; (\sim 83 \; km)$	$N_{max} = 210 \; (\sim 95 \; km)$	$N_{max} = 224 \; (\sim 89 \; km)$
REL02	$N_{max} = 240 \; (\sim 83 \; km)$	$N_{max} = 240 \; (\sim 83 \; km)$	$N_{max} = 250 \ (80 \ km)$
REL03	$N_{max} = 240 \; (\sim 83 \; km)$		$N_{max} = 250 \ (80 \ km)$

GOCE data

REL03 November 2009 to April 2011 (~1.5 years of data)

	DIR	SPW	TIW
REL01	$N_{max} = 240 \; (\sim 83 \; km)$	$N_{max} = 207 \; (\sim 97 \; km)$	$N_{max} = 212 \; (\sim 94 \; km)$
REL02	$N_{max} = 240 \; (\sim 83 \; km)$	$N_{max} = 200 \ (100 \ km)$	$N_{max} = 225 \; (\sim 89 \; km)$
REL03	$N_{max} = 240 \; (\sim 83 \; km)$		$N_{max} = 232 \; (\sim 86 \; km)$

<u>Altimetry MSS</u>

CLS01-MSS (Hernandez & Schaeffer, 2001): 1993-1999

Sea Level Anomalies (AVISO): Oct 1992 – Dec 2010

Mean Sea Surface ~18 years

(note: usual corrections applied)

MDT=MSS-GEOID

(note: Spectral combination (Bingham et al. 2008); half degree)

MDT=MSS-GEOID

(note: Spectral combination (Bingham et al. 2008); half degree)

MDT=MSS-GEOID

(note: Spectral combination (Bingham et al. 2008); half degree)

 45° 0[°] 90 45[°] . 90 -1.2 m -1.4 -1 -0.8 -0.6 -0.4

Results are compared with

- velocities measured by in-situ drifter buoys (GDP assembly center)
- Maximenko et al. (2009)'s MDT (assimilates drifters)
- Rio et al. (2011)'s MDT (assimilates drifters)
- Chambers' MDT (DNSC08-EGM08)

120

140 160

180

120 140 160 180

FILTERED-MDT DERIVED CURRENTS (Edge Enhancing Diffusion) (Please see Poster 25)

FILTERED-MDT DERIVED CURRENTS (Edge Enhancing Diffusion) (Please see Poster 25)

	Nmax								
RMS (cm/s)	DIR	SPW	TIW						
RELEASE 01	7,9	8,1	7,5						
RELEASE 02	7,5	7,1	7,1						
RELEASE 03	7		6,9						

	Nmax								
RMS (cm/s)	DIR	SPW	TIW						
RELEASE 01	7,9	8,1	7,5						
RELEASE 02	7,5	7,1	7,1						
RELEASE 03	7		6,9						

	Nmax								
RMS (cm/s)	DIR	SPW	TIW						
RELEASE 01	7,9	8,1	7,5						
RELEASE 02	7,5	7,1	7,1						
RELEASE 03	7		6,9						

	Nmax								
RMS (cm/s)	DIR	SPW	TIW						
RELEASE 01	7,9	8,1	7,5						
RELEASE 02	7,5	7,1	7,1						
RELEASE 03	7		6,9						

	Nmax								
RMS (cm/s)	DIR	SPW	TIW						
RELEASE 01	7,9	8,1	7,5						
RELEASE 02	7,5	7,1	7,1						
RELEASE 03	7		6,9						

Nakano et al. 2008

RMS differences (cm/s)		DIR	SPW	TIW		
	RELEASE 01	80,2	65,5	62,4	MAXI.	71,5
	RELEASE 02	70,8	63	67,8	RIO09	49,4
	RELEASE 03	70,4		70,7	CHAMB.	135,4

FULL AREA

RMS differences (cm/s)		DIR	SPW	TIW		
	RELEASE 01	80,2	65,5	62,4	MAXI.	71,5
	RELEASE 02	70,8	63	67,8	RIO09	49,4
	RELEASE 03	70,4		70,7	CHAMB.	135,4

FULL AREA

RIO

RMS differences (cm/s)		DIR	SPW	TIW			
	RELEASE 01	80,2 24) 65,5 20	7 62,4 2	242	MAXI.	71,5
	RELEASE 02	70,8 24	0 63 20	0 67,8 2	225	RIO09	49,4
	RELEASE 03	70,4 24	D	70,7 2	2 β 2	CHAMB.	135,4
				W			

FULL AREA

160

160 180

180

FULL AREA\[0ºN 5ºN]

160

160 180

180

					-	
RMS differences (cm/s)		DIR	SPW	TIW		
	RELEASE 01	18,5 24	0 17,5 20	7 17,1 2	12 MAXI.	62,7
	RELEASE 02	16,9 24	0 19,9 20	0 17,5 2	25 RIO09	44,1
	RELEASE 03	18,6 24	0	16,9 2	В2 СНАМВ.	72,4
		•		Ý		

								I	REL01			REL02		REI	L03
	LOC	LAT	LON	DRIFT	MAXI.	RIO09	CHAM.	DIR	SPW	TIW	DIR	SPW	TIW	DIR	TIW
	1	35,25	151,75	39,2	27	21,4	26	45,3	44,7	44,8	47,2	43,1	46,9	45,4	47,9
	2	35,75	142,75	72	32,1	50,2	44,7	69,7	63,6	59 <i>,</i> 9	65,4	62,9	62,7	62,3	64,1
KC	3	33,25	140,25	39,5	26,9	23,6	31,8	42,8	39,5	37,5	40,8	35,8	38,4	39,3	38,8
ĸĊ	4	32,75	134,25	72,4	54,9	99,5	69,7	72,3	62,9	76,9	87,3	62,2	81,1	85,9	83
	5	29,25	127,25	60,6	35,1	35,6	42,9	57,7	52,4	56,3	57,5	52,6	59,8	57,6	61,6
	6	24,75	122,75	76,2	25,3	85,3	66,9	85,7	76,8	76,4	77,7	86,6	80,3	81,3	82
			RM	1s kc	30,1	20,4	15,2	5	6,6	6,1	7,6	8	6,3	7,6	6,9
	7	10,75	132,25	33,3	23,7	30,6	32,3	43,8	51,8	36,6	39,7	37,4	37,2	45,4	37,6
NEC	8	11,75	139,75	29,1	20	23,8	23,5	40,9	30,4	32,7	35,9	36,6	33,5	34,7	34
	9	12,25	151,75	24	15,9	16,2	21,9	25,3	29,8	30,3	30	32,4	31,7	29,3	32,5
			RMS	NEC	9	5,7	3,5	9,2	11,2	4,6	6,4	6,9	5,6	8,3	6,2
	10	5,25	132,75	68,6	36,2	70,7	78,4	125	98,1	102,2	102,6	91,3	109	112,6	112,6
	11	4,25	142,75	27	20,2	25,6	35,6	81,8	79,2	77,5	97,4	62,5	84,2	93,1	87,9
ECC	12	3,75	150,25	19,7	12,3	25,4	46,4	62,5	44,8	31,9	13,6	39,3	25 <i>,</i> 5	38,1	21,8
	13	4,25	163,75	19,3	11,3	19,5	49,8	59,9	49,7	53 <i>,</i> 9	59	46,9	57,7	54,1	59,9
	14	5,25	174,75	36,5	26,6	27,4	72,5	96,9	57	62,6	76,2	73,5	64,4	68	65,4
			RMS	S ECC	16,2	4,9	25	51,6	33,4	33,8	43,1	29,3	37,9	42,1	40,3
			RM	S ALL	22,4	13,9	18	31,3	21,1	20,7	26,4	18,6	23,2	25,9	24,7

								REL01				REL02	REL03		
	LOC	LAT	LON	DRIFT	MAXI.	RIO09	CHAM.	DIR	SPW	TIW	DIR	SPW	TIW	DIR	TIW
	1	35,25	151,75	39,2	27	21,4	26	45,3	44,7	44,8	47,2	43,1	46,9	45,4	47,9
KC	2	35,75	142,75	72	32,1	50,2	44,7	69,7	63,6	59,9	65,4	62,9	62,7	62,3	64,1
	3	33,25	140,25	39,5	26,9	23,6	31,8	42,8	39,5	37,5	40,8	35,8	38,4	39,3	38,8
ĸĊ	4	32,75	134,25	72,4	54,9	99,5	69,7	72,3	62,9	76,9	87,3	62,2	81,1	85,9	83
	5	29,25	127,25	60,6	35,1	35,6	42,9	57,7	52,4	56,3	57,5	52,6	59,8	57,6	61,6
	6	24,75	122,75	76,2	25,3	85,3	66,9	85,7	76,8	76,4	77,7	86,6	80,3	81,3	82
	RMS KC			1s kc	30,1	20,4	15,2	5	6,6	6,1	7,6	8	6,3	7,6	6,9
	7	10,75	132,25	33,3	23,7	30,6	32,3	43,8	51,8	36,6	39,7	37,4	37,2	45,4	37,6
NEC	8	11,75	139,75	29,1	20	23,8	23,5	40,9	30,4	32,7	35,9	36,6	33,5	34,7	34
	9	12,25	151,75	24	15,9	16,2	21,9	25,3	29,8	30,3	30	32,4	31,7	29,3	32,5
			RMS	NEC	9	5,7	3,5	9,2	11,2	4,6	6,4	6,9	5,6	8,3	6,2
	10	5,25	132,75	68,6	36,2	70,7	78,4	125	98,1	102,2	102,6	91,3	109	112,6	112,6
	11	4,25	142,75	27	20,2	25,6	35,6	81,8	79,2	77,5	97,4	62,5	84,2	93,1	87,9
ECC	12	3,75	150,25	19,7	12,3	25,4	46,4	62,5	44,8	31,9	13,6	39,3	25,5	38,1	21,8
	13	4,25	163,75	19,3	11,3	19,5	49,8	59,9	49,7	53,9	59	46,9	57,7	54,1	59,9
	14	5,25	174,75	36,5	26,6	27,4	72,5	96,9	57	62,6	76,2	73,5	64,4	68	65,4
			RMS	S ECC	16,2	4,9	25	51,6	33,4	33,8	43,1	29,3	37,9	42,1	40,3
	[RM	S ALL	22,4	13,9	18	31,3	21,1	20,7	26,4	18,6	23,2	25,9	24,7

								REL01				REL02	REL03		
	LOC	LAT	LON	DRIFT	MAXI.	RIO09	CHAM.	DIR	SPW	TIW	DIR	SPW	TIW	DIR	TIW
	1	35,25	151,75	39,2	27	21,4	26	45,3	44,7	44,8	47,2	43,1	46,9	45,4	47,9
KC	2	35,75	142,75	72	32,1	50,2	44,7	69,7	63,6	59 <i>,</i> 9	65,4	62,9	62,7	62,3	64,1
	3	33,25	140,25	39,5	26,9	23,6	31,8	42,8	39,5	37,5	40,8	35,8	38,4	39,3	38,8
ĸĊ	4	32,75	134,25	72,4	54,9	99,5	69,7	72,3	62,9	76,9	87,3	62,2	81,1	85,9	83
	5	29,25	127,25	60,6	35,1	35,6	42,9	57,7	52,4	56,3	57,5	52,6	59,8	57,6	61,6
	6	24,75	122,75	76,2	25,3	85,3	66,9	85,7	76,8	76,4	77,7	86,6	80,3	81,3	82
	RMS KC			1s kc	30,1	20,4	15,2	5	6,6	6,1	7,6	8	6,3	7,6	6,9
	7	10,75	132,25	33,3	23,7	30,6	32,3	43,8	51,8	36,6	39,7	37,4	37,2	45,4	37,6
NEC	8	11,75	139,75	29,1	20	23,8	23,5	40,9	30,4	32,7	35,9	36,6	33,5	34,7	34
	9	12,25	151,75	24	15,9	16,2	21,9	25,3	29,8	30,3	30	32,4	31,7	29,3	32,5
			RMS	NEC	9	5,7	3,5	9,2	11,2	4,6	6,4	6,9	5,6	8,3	6,2
	10	5,25	132,75	68,6	36,2	70,7	78,4	125	98,1	102,2	102,6	91,3	109	112,6	112,6
	11	4,25	142,75	27	20,2	25,6	35,6	81,8	79,2	77,5	97,4	62,5	84,2	93,1	87,9
ECC	12	3,75	150,25	19,7	12,3	25,4	46,4	62,5	44,8	31,9	13,6	39,3	25,5	38,1	21,8
	13	4,25	163,75	19,3	11,3	19,5	49,8	59,9	49,7	53,9	59	46,9	57,7	54,1	59,9
	14	5,25	174,75	36,5	26,6	27,4	72,5	96,9	57	62,6	76,2	73,5	64,4	68	65,4
			RMS	S ECC	16,2	4,9	25	51,6	33,4	33,8	43,1	29,3	37,9	42,1	40,3
			RM	S ALL	22,4	13,9	18	31,3	21,1	20,7	26,4	18,6	23,2	25,9	24,7

								REL01				REL02	REL03		
	LOC	LAT	LON	DRIFT	MAXI.	RIO09	CHAM.	DIR	SPW	TIW	DIR	SPW	TIW	DIR	TIW
	1	35,25	151,75	39,2	27	21,4	26	45,3	44,7	44,8	47,2	43,1	46,9	45,4	47,9
KC	2	35,75	142,75	72	32,1	50,2	44,7	69,7	63,6	59 <i>,</i> 9	65,4	62,9	62,7	62,3	64,1
	3	33,25	140,25	39,5	26,9	23,6	31,8	42,8	39,5	37,5	40,8	35,8	38,4	39,3	38,8
ĸĊ	4	32,75	134,25	72,4	54,9	99,5	69,7	72,3	62,9	76,9	87,3	62,2	81,1	85,9	83
	5	29,25	127,25	60,6	35,1	35,6	42,9	57,7	52,4	56,3	57,5	52,6	59,8	57,6	61,6
	6	24,75	122,75	76,2	25,3	85,3	66,9	85,7	76,8	76,4	77,7	86,6	80,3	81,3	82
			RM	1s kc	30,1	20,4	15,2	5	6,6	6,1	7,6	8	6,3	7,6	6,9
	7	10,75	132,25	33,3	23,7	30,6	32,3	43,8	51,8	36,6	39,7	37,4	37,2	45,4	37,6
NEC	8	11,75	139,75	29,1	20	23,8	23,5	40,9	30,4	32,7	35,9	36,6	33,5	34,7	34
	9	12,25	151,75	24	15,9	16,2	21,9	25,3	29,8	30,3	30	32,4	31,7	29,3	32,5
			RMS	NEC	9	5,7	3,5	9,2	11,2	4,6	6,4	6,9	5,6	8,3	6,2
	10	5,25	132,75	68,6	36,2	70,7	78,4	125	98,1	102,2	102,6	91,3	109	112,6	112,6
	11	4,25	142,75	27	20,2	25,6	35,6	81,8	79,2	77,5	97,4	62,5	84,2	93,1	87,9
ECC	12	3,75	150,25	19,7	12,3	25,4	46,4	62,5	44,8	31,9	13,6	39,3	25,5	38,1	21,8
	13	4,25	163,75	19,3	11,3	19,5	49,8	59,9	49,7	53 <i>,</i> 9	59	46,9	57,7	54,1	59,9
	14	5,25	174,75	36,5	26,6	27,4	72,5	96,9	57	62,6	76,2	73,5	64,4	68	65,4
			RMS	S ECC	16,2	4,9	25	51,6	33,4	33,8	43,1	29,3	37,9	42,1	40,3
	[RM	S ALL	22,4	13,9	18	31,3	21,1	20,7	26,4	18,6	23,2	25,9	24,7

				REL01				REL02	REL03						
	LOC	LAT	LON	DRIFT	MAXI.	RIO09	CHAM.	DIR	SPW	TIW	DIR	SPW	TIW	DIR	TIW
	1	35,25	151,75	39,2	27	21,4	26	45,3	44,7	44,8	47,2	43,1	46,9	45,4	47,9
KC	2	35,75	142,75	72	32,1	50,2	44,7	69,7	63,6	59,9	65,4	62,9	62,7	62,3	64,1
	3	33,25	140,25	39,5	26,9	23,6	31,8	42,8	39,5	37,5	40,8	35,8	38,4	39,3	38,8
ĸĊ	4	32,75	134,25	72,4	54,9	99,5	69,7	72,3	62,9	76,9	87,3	62,2	81,1	85,9	83
	5	29,25	127,25	60,6	35,1	35,6	42,9	57,7	52,4	56,3	57,5	52,6	59,8	57,6	61,6
	6	24,75	122,75	76,2	25,3	85,3	66,9	85,7	76,8	76,4	77,7	86,6	80,3	81,3	82
	RMS KC			1s kc	30,1	20,4	15,2	5	6,6	6,1	7,6	8	6,3	7,6	6,9
	7	10,75	132,25	33,3	23,7	30,6	32,3	43,8	51,8	36,6	39,7	37,4	37,2	45,4	37,6
NEC	8	11,75	139,75	29,1	20	23,8	23,5	40,9	30,4	32,7	35,9	36,6	33,5	34,7	34
	9	12,25	151,75	24	15,9	16,2	21,9	25,3	29,8	30,3	30	32,4	31,7	29,3	32,5
			RMS	NEC	9	5,7	3,5	9,2	11,2	4,6	6,4	6,9	5,6	8,3	6,2
	10	5,25	132,75	68,6	36,2	70,7	78,4	125	98,1	102,2	102,6	91,3	109	112,6	112,6
	11	4,25	142,75	27	20,2	25,6	35,6	81,8	79,2	77,5	97,4	62,5	84,2	93,1	87,9
ECC	12	3,75	150,25	19,7	12,3	25,4	46,4	62,5	44,8	31,9	13,6	39,3	25,5	38,1	21,8
	13	4,25	163,75	19,3	11,3	19,5	49,8	59,9	49,7	53,9	59	46,9	57,7	54,1	59,9
	14	5,25	174,75	36,5	26,6	27,4	72,5	96,9	57	62,6	76,2	73,5	64,4	68	65,4
			RMS	S ECC	16,2	4,9	25	51,6	33,4	33,8	43,1	29,3	37,9	42,1	40,3
			RM	S ALL	22,4	13,9	18	31,3	21,1	20,7	26,4	18,6	23,2	25,9	24,7

								REL01				REL02	REL03		
	LOC	LAT	LON	DRIFT	MAXI.	RIO09	CHAM.	DIR	SPW	TIW	DIR	SPW	TIW	DIR	TIW
	1	35,25	151,75	39,2	27	21,4	26	45,3	44,7	44,8	47,2	43,1	46,9	45,4	47,9
KC	2	35,75	142,75	72	32,1	50,2	44,7	69,7	63,6	59,9	65,4	62,9	62,7	62,3	64,1
	3	33,25	140,25	39,5	26,9	23,6	31,8	42,8	39,5	37,5	40,8	35,8	38,4	39,3	38,8
ĸĊ	4	32,75	134,25	72,4	54,9	99,5	69,7	72,3	62,9	76,9	87,3	62,2	81,1	85,9	83
	5	29,25	127,25	60,6	35,1	35,6	42,9	57,7	52,4	56,3	57,5	52,6	59,8	57,6	61,6
	6	24,75	122,75	76,2	25,3	85,3	66,9	85,7	76,8	76,4	77,7	86,6	80,3	81,3	82
	RMS KC			30,1	20,4	15,2	5	6,6	6,1	7,6	8	6,3	7,6	6,9	
	7	10,75	132,25	33,3	23,7	30,6	32,3	43,8	51,8	36,6	39,7	37,4	37,2	45,4	37,6
NEC	8	11,75	139,75	29,1	20	23,8	23,5	40,9	30,4	32,7	35,9	36,6	33,5	34,7	34
	9	12,25	151,75	24	15,9	16,2	21,9	25,3	29,8	30,3	30	32,4	31,7	29,3	32,5
			RMS	NEC	9	5,7	3,5	9,2	11,2	4,6	6,4	6,9	5,6	8,3	6,2
	10	5,25	132,75	68,6	36,2	70,7	78,4	125	98,1	102,2	102,6	91,3	109	112,6	112,6
	11	4,25	142,75	27	20,2	25,6	35,6	81,8	79,2	77,5	97,4	62,5	84,2	93,1	87,9
ECC	12	3,75	150,25	19,7	12,3	25,4	46,4	62,5	44,8	31,9	13,6	39,3	25,5	38,1	21,8
	13	4,25	163,75	19,3	11,3	19,5	49,8	59,9	49,7	53,9	59	46,9	57,7	54,1	59,9
	14	5,25	174,75	36,5	26,6	27,4	72,5	96,9	57	62,6	76,2	73,5	64,4	68	65,4
			RMS	S ECC	16,2	4,9	25	51,6	33,4	33,8	43,1	29,3	37,9	42,1	40,3
			RM	S ALL	22,4	13,9	18	31,3	21,1	20,7	26,4	18,6	23,2	25,9	24,7

				REL01				REL02	REL03						
	LOC	LAT	LON	DRIFT	MAXI.	RIO09	CHAM.	DIR	SPW	TIW	DIR	SPW	TIW	DIR	TIW
	1	35,25	151,75	39,2	27	21,4	26	45,3	44,7	44,8	47,2	43,1	46,9	45,4	47,9
KC	2	35,75	142,75	72	32,1	50,2	44,7	69,7	63,6	59,9	65,4	62,9	62,7	62,3	64,1
	3	33,25	140,25	39,5	26,9	23,6	31,8	42,8	39,5	37,5	40,8	35,8	38,4	39,3	38,8
ĸĊ	4	32,75	134,25	72,4	54,9	99,5	69,7	72,3	62,9	76,9	87,3	62,2	81,1	85,9	83
	5	29,25	127,25	60,6	35,1	35,6	42,9	57,7	52,4	56,3	57,5	52,6	59,8	57,6	61,6
	6	24,75	122,75	76,2	25,3	85,3	66,9	85,7	76,8	76,4	77,7	86,6	80,3	81,3	82
	RMS KC			1s kc	30,1	20,4	15,2	5	6,6	6,1	7,6	8	6,3	7,6	6,9
	7	10,75	132,25	33,3	23,7	30,6	32,3	43,8	51,8	36,6	39,7	37,4	37,2	45,4	37,6
NEC	8	11,75	139,75	29,1	20	23,8	23,5	40,9	30,4	32,7	35,9	36,6	33,5	34,7	34
	9	12,25	151,75	24	15,9	16,2	21,9	25,3	29,8	30,3	30	32,4	31,7	29,3	32,5
			RMS	NEC	9	5,7	3,5	9,2	11,2	4,6	6,4	6,9	5,6	8,3	6,2
	10	5,25	132,75	68,6	36,2	70,7	78,4	125	98,1	102,2	102,6	91,3	109	112,6	112,6
	11	4,25	142,75	27	20,2	25,6	35,6	81,8	79,2	77,5	97,4	62,5	84,2	93,1	87,9
ECC	12	3,75	150,25	19,7	12,3	25,4	46,4	62,5	44,8	31,9	13,6	39,3	25,5	38,1	21,8
	13	4,25	163,75	19,3	11,3	19,5	49,8	59,9	49,7	53,9	59	46,9	57,7	54,1	59,9
	14	5,25	174,75	36,5	26,6	27,4	72,5	96,9	57	62,6	76,2	73,5	64,4	68	65,4
			RMS	S ECC	16,2	4,9	25	51,6	33,4	33,8	43,1	29,3	37,9	42,1	40,3
			RM	S ALL	22,4	13,9	18	31,3	21,1	20,7	26,4	18,6	23,2	25,9	24,7

<u>Summary</u>

- Some differences in the MDT are located at the Philippine-Pacific ridge (note: strong gradient in gravity signal) but all models provide similar velocities estimation when properly filtered.
- GOCE-based currents are in better agreement with velocities measured by insitu drifters than Rio09, Maximenko and Chambers' velocities estimation. (note: <1°)</p>
- The Recirculation Gyre at the Kuroshio area is caught by GOCE-based MDTs (note: altimetry-independent models)

<u>Summary</u>

- Some differences in the MDT are located at the Philippine-Pacific ridge (note: strong gradient in gravity signal) but all models provide similar velocities estimation when properly filtered.
- GOCE-based currents are in better agreement with velocities measured by insitu drifters than Rio09, Maximenko and Chambers' velocities estimation. (note: <1°)</p>
- The Recirculation Gyre at the Kuroshio area is caught by GOCE-based MDTs (note: altimetry-independent models)

...but further work requires...

- …using a "finer" reference when filtering
- …look into the variance-covariance matrix to examine errors in the geoid determination.

Thank you for your attention!

jms.reales@ua.es