

Impact of GDR_D standards on SSB corrections

N. Tran, S. Philipps, J-C Poisson, S. Urien (CLS) E. Bronner, N. Picot (CNES)

OSTST 2012, Venice

Splinter : Instrument Processing

Jason-1 SSB comparison

							<u>Ρααε 2</u>
Model name	Period (year)	Cycles	Colinear method	Data source	Range & SWH	Wind	Reference
SSB_J1_Ref (operational)	3	1-111	standard	GDR_B	MLE-4	MLE-4	Labroue, 2008
SSB_J1_New	3	1-111	modified	GDR_C	MLE-4	MLE-4	2012
SSB_J1_NewOrb	3	1-111	modified	GDR_C + GDR_D Orbits	MLE-4	MLE-4	2012

SSB_J1_New - SSB_J1_Ref

-0.050 -0.040 -0.030 -0.020 -0.010 -0.000 0.010 0.020 0.030 0.040 0.05

SSH crossovers : VAR(SSH with POE-D) - VAR(SSH with POE-C)

 \rightarrow GDR_D orbits improve SSH comparison at crossovers \rightarrow impact on SSB model to evaluate

Jason-1 GDR_D orbit update

Page 3

SSB_J1_NewOrb - SSB_J1_New

Mean of POE–D – POE–C Mission j1, cycles 1 to 374

 \rightarrow No geographically correlated orbit differences with sea state

 \rightarrow No need to change the Jason-1 SSB model

Jason-2 SSB comparison

CONTRETE LOCALIZATION SAFELITES CONTRENATIONAL OCTUDES SPATIALE							i age 5
Model name	Period (year)	Cycles	Colinear method	Data source	Range & SWH	Wind	Reference
SSB_J2_Ref (operational)	1	7-43	modified	GDR_T + GOT4v7 + retracking reprocessed at CLS	MLE-4	MLE-4	2011
SSB_J2_New	1	1-36	modified	GDR_D	MLE-4	MLE-4	2012

Where do these differences come from?

To evaluate impact on SSB model of:

- \rightarrow changes in radiometer parameters
- \rightarrow change in orbit
- \rightarrow change in tide model
- \rightarrow changes in altimeter derived parameters

SSH (GDR_D + SSB_J2_New) vs SSH (GDR_D + SSB_J2_Ref)

Mission j2, cycles 1 to 36

Page 6

→ Better to use this last Jason-2 SSB model , small improvement observed

Impact on SSB of changes in standard

Page 7

<figure>

Orbit change impact

- 50 mm + 50 mm

GOT4.8-GOT4.7 change impact

-0.000 0.010

0.020 0.030 0.040

→ No impact on SSB solutions

COES GDR_T(range)-GDR_D(range)

Service Altimetrie Localisation

RECISE

GDR_T(SWH)-GDR_D(SWH)

CLS reprocessed(range)-GDR_D(range)

Difference (Mean) – (Mean), X–X

→ No significant differences between GDR_D and CLS processings

Wind speed comparison

 \rightarrow Observed differences in SSB due to differences in wind speed estimates

 \rightarrow SSB models in GDR_D based on a wind speed (U_reproc) tuned with a preliminary bias on sigma0 (09/2011)

 \rightarrow Wind speed in GDR_D computed with a finetuned bias (01/2012) that takes into account additionally a correction from LTM and corrected atmospheric correction from S. Brown in sigma0

Jason-1/-2 Wind speed

Altimeter wind speed (m/s)

 \rightarrow good consistency between Jason-1 and Jason-2 GDR_D estimates Slight differences expected due to Jason-1 mispointing effects on σ 0 during the tandem period.

Page 10

 \rightarrow When we use latest developed models for both missions: no SSB differences (within 5 mm) between Jason-1 & Jason-2

•

Page 12

- There is no need to update the Jason-1 SSB model otherwise that for consistency with Jason-2 to insure a seamless transition between missions.
- It looks slightly better to use for Jason-2 the SSB model derived directly from the GDR_D products due to some small changes in wind speed reference.
- There is no SSB differences between Jason-2 and Jason-1 (SSB_J2_New vs SSB_J1_NewOrb) when these solutions are derived from homogeneous datasets and in similar ways.
- These models are available on request (ntran@cls.fr)