

SINES

Splinter session III – Precision Orbit Determination

Jason-1 and Jason-2 POD Status

A. Couhert, L. Cerri, F. Mercier, S. Houry

September 28, 2012

Ocean Surface Topography Science Team Meeting Venice-Lido, Italy

- Comparisons with External Orbits
- Performance of the Tracking Systems
- Quantifying and Characterizing GDR-D Orbit Error
- Time-Varying Gravity Field Effects on Jason's Orbit

RMS of radial orbit differences relative to the Jason-2 GDR-D solution

Jason-2 cycles

- GDR-D higher (w.r.t. the 2011 preliminary GDR-D solution) relative weight of GPS measurements explains the better agreement with the JPL orbit (~6 mm)
- Radial RMS differences slightly increased after cycle 100 w.r.t. the GSFC orbit?

 The mean radial differences between the GDR-D solution and the GSFC orbit shows ~6 mm East – West patterns, typical of gravity field modeling differences

Coes

Mean of Z orbit differences relative to the Jason-2 GDR-D solution

The GDR-D solution compares well w.r.t GSFC and JPL orbits

Mean of cross-track differences relative to the Jason-2 GDR-D solution

 Less than 5-mm 120-day signal in the cross-track mean differences w.r.t. the GSFC and JPL orbits

Comparisons with External Orbits 120-day Geographically Correlated Radial Signal

Typical signature of SRP model differences

- Halving (1 cm to 5 mm) of the previous OSTST meeting 120-day signal between the GSFC orbit and the GDR-D solution
- Similar geographical distribution of these 120-day patterns in the GSFC and JPL orbits when compared to the GDR-D solution

Mean of along-track differences relative to the Jason-2 GDR-D solution

7-mm along-track bias after the cycles 50 between the GDR-D solution and the JPL orbit

RMS of GPS phase post-fit residuals for the Jason-2 GDR-D solution 6.5 6.0

- GPS phase residuals degrades after the cycles 50:
 - » Increasing number of measurements
 - » Longer mean track length
 - » Current pre-processing is not tuned for half-cycle slips removal

Performance of the Tracking Systems GPS Phase Residual Degradation Impact on the Orbit

Jason-2 DORIS-based orbit differences relative to its GPS-only solution counterpart

- No conclusive sign of degradation due to this effect on the radial component of the GPS orbit
- The along-track bias observed between the GDR-D solution and the JPL orbit seems to be correlated with this degradation

OSTM JASON

Ccnes

RMS of DORIS* post-fit residuals (10-seconds phase increments) for the Jason-1 and Jason-2 GDR-D solutions

*Worst 6 stations removed (ADFB, ARFB, CIDB, SYPB, YEMB, GR3B)

RMS of DORIS* post-fit residuals (10-seconds phase increments) for the Jason-1 and Jason-2 GDR-D solutions

*Worst 6 stations removed (ADFB, ARFB, CIDB, SYPB, YEMB, GR3B)

 Stronger SAA effect on DORIS residuals since Jason-1 orbit change: SAA corrective model problem?

DORIS SAA beacons residuals:

 The Jason-1 DORIS residuals keep increasing on the SAA beacons

Performance of the Tracking Systems Historically Well Performing SLR Stations

SLR reference stations (7080 Mcdo, 7090Yarr, 7105Wash, 7810Zimm, 7839Graz, 7840Hers, 7941Mate) residuals on independent Jason-2 GPS-derived orbits (all elevations)

JPL GPS-based reduced dynamic orbit:

<u>CNES GPS-based</u> <u>dynamic solution:</u>

 Visible Mount Stromlo degradation over the last year

Quantifying and Characterizing GDR-D Orbit Error SLR Validation

High elevation (above 70 degrees) SLR core network residuals on Jason-1 and Jason-2 GDR-D solutions

- High elevation SLR residuals reflects the radial orbit accuracy
- ~1-cm radial orbits accuracy for Jason-1 and Jason-2

Quantifying and Characterizing GDR-D Orbit Error Along-track 1-cpr Empirical Accelerations

OSTMOJASON

Altimeter crossover gain (positive values) per cycle of the different Jason-2 orbits with respect to the GDR-D solution

The crossover statistics evaluate relative performance of each orbit solution
The reduced dynamic solution performs slightly better than the dynamic orbits

RMS of radial differences between the GDR-D solution and GDR-D orbits using the 10-day series of GRACE-derived gravity field

 The gravity mean model (used in the GDR-D solution) is consistent with subcm radial orbit accuracy, even out of the adjustment period of the mean model (before 2003 - after 2010)

Geographically correlated radial difference drifts between the Jason-2 GDR-D solution and the GSFC/JPL orbits

 ~2 mm/y East – West patterns common to the GSFC and JPL orbits w.r.t. the GDR-D solution, to be closely monitored

~3-mm type of signature observed between the GDR-D solution and the GSFC and JPL orbits

RMS of radial orbit differences relative to the Jason-2 GDR-D orbits using the 10-day series of GRACE-derived gravity field

 The 10-day series tend to reduce the RMS radial discrepancies between the GDR-D solution and the GSFC orbit

- Overall ~1 cm stable Jason-1 and Jason-2 radial orbit accuracy
- Including GRACE-derived drifts in the TVG model (GDR-D standard update) provides a significant improvement in the orbit accuracy...
- ... although this mean model is still lacking for some portion of the gravity signal contained in the 10-day series of GRACE-derived field (but are not available for operational orbit production...)
- Necessary to carefully handle SAA effect on Jason-1
- Jason-2 GPS phase half-cycle slips

Backup Slides

Cones

RMS of radial orbit differences relative to the GDR-D* solution

Cones

120-day geographically correlated radial signal

Jason-2 GDR - GSFC LD TST1110 radial differences, cycles 1-105

Amplitude of Cos (nm/s²) Jason-2 -8 Amplitude of Sin (nm/s²) Jason-2 -4 Date (year)

Amplitude estimated 1-cpr empirical accelerations cross-track

26 OSTST Meeting, Venice, September 28, 2012, Couhert et al.

ecnes