An analytical model for Doppler altimetry and its estimation algorithm

Abderrahim Halimi ${ }^{(1)}$, Corinne Mailhes ${ }^{(1)}$, Jean-Yves Tourneret ${ }^{(1)}$, Francois Boy ${ }^{(2)}$, Nicolas Picot ${ }^{(2)}$ and Pierre Thibaut ${ }^{(3)}$

(1) University of Toulouse, IRIT-ENSEEIHT-TéSA, Toulouse, France
${ }^{(2)}$ Centre National d'Etudes Spatiales (CNES), Toulouse, France
${ }^{(3)}$ Collecte Localisation Satellite (CLS), Toulouse, France

OSTST 2012, Venice, Italy

An analytical model for Doppler altimetry and its estimation algorithm

Plan

Introduction

Proposed analytical model

Retracking

Validation (synthetic data + Cryosat waveforms)

Conclusions and perspectives

An analytical model for Doppler altimetry and its estimation algorithm

L Introduction

Plan

Introduction

Proposed analytical model

Retracking

Validation (synthetic data + Cryosat waveforms)

Conclusions and perspectives

Introduction

Contributions

- Elaboration of an analytical model for Doppler altimetry
- Link between conventional and Doppler altimetry

Advantages of Doppler altimetry?

An analytical model for Doppler altimetry and its estimation algorithm

LProposed analytical model

Plan

Introduction

Proposed analytical model

Retracking

Validation (synthetic data + Cryosat waveforms)

Conclusions and perspectives

Double convolution model

Conventional altimetry

$$
\boldsymbol{P}(t)=\operatorname{FSSR}(t) \otimes \operatorname{PTR}(t) \otimes \operatorname{PDF}(t)
$$

Flat Sea Surface Response (FSSR)

Response of the radar to a pulse reflected on a flat surface (sea without waves).

Radar Point Target Response (PTR)
Probability Density Function (PDF)
Probability density of height specular points (assumed Gaussian for the Brown model ${ }^{1}$)

1. G. Brown, "The average impulse response of a rough surface and its applications", IEEE TAP, Jan. 1977

Double convolution model

Conventional altimetry

$$
\boldsymbol{P}(t)=\operatorname{FSSR}(t) \otimes \operatorname{PTR}(t) \otimes \operatorname{PDF}(t)
$$

Doppler altimetry ${ }^{2} 3$

$$
\boldsymbol{P}(t, n)=\operatorname{FSSR}(t, n) \otimes \operatorname{PTR}(t, n) \otimes \operatorname{PDF}(t)
$$

- n : Doppler band or frequency

2. Y. Shuang-Bao and al., "The mean echo model and data process of SAR altimeter", IEEE IGARSS, Vancouver, Canada, 2011
3. L. Phalippou and al., "Re-tracking of SAR altimeter ocean power-waveforms and related accuracies of the retrieved sea surface height, significant wave height and wind speed ", IEEE IGARSS, Barcelona, Spain, 2007

An analytical model for Doppler altimetry and its estimation algorithm

FSSR for conventional altimetry

An analytical model for Doppler altimetry and its estimation algorithm

ᄂ Proposed analytical model

FSSR for Doppler altimetry

An analytical model for Doppler altimetry and its estimation algorithm

-Proposed analytical model

Analytical model for FSSR (3 parameters)

$\operatorname{FSSR}(k, n)=P_{u}\left(\frac{2 h}{t_{k} c}\right)^{3} \exp \left\{-\frac{4}{\gamma}\left[1-\left(\frac{2 h}{t_{k} c}\right)^{2}\right]\right\}\left[\frac{\phi(k, n)-\phi(k, n-1)}{\pi}\right]$

An analytical model for Doppler altimetry and its estimation algorithm

Proposed analytical model

Analytical model for FSSR (3 parameters)

$\operatorname{FSSR}(k, n)=P_{u}\left(\frac{2 h}{t_{k} c}\right)^{3} \exp \left\{-\frac{4}{\gamma}\left[1-\left(\frac{2 h}{t_{k} c}\right)^{2}\right]\right\}\left[\frac{\phi(k, n)-\phi(k, n-1)}{\pi}\right]$

- $k=1, \cdots, 104$ (gates)
- $n=1, \cdots, 64$ (frequencies)
- $t_{k}=\frac{2 h}{c}+k T-\tau$ for $k>\frac{\tau}{T}$
- $\phi(k, n)=\arctan \left(\frac{y_{n}}{\sqrt{\rho^{2}(k)-y_{n}^{2}}}\right)$
- $y_{n}=\frac{h \lambda}{2 v_{s}} f_{n}$
- $\rho(k)=\sqrt{\left(\frac{t_{k} c}{2}\right)^{2}-h^{2}}$

Multi-look echo ${ }^{4}$

$$
\begin{gathered}
\boldsymbol{P}(t, n)=\operatorname{FSSR}(t, n) \otimes \operatorname{PTR}(t, n) \otimes \operatorname{PDF}(t) \\
s(t)=\sum_{n=1}^{64} P[t-\delta t(n), n]
\end{gathered}
$$

4. K. Raney, "The delay/Doppler radar altimeter", IEEE TGRS, Sep. 1998

An analytical model for Doppler altimetry and its estimation algorithm

Plan

Introduction

Proposed analytical model

Retracking

Validation (synthetic data + Cryosat waveforms)

Conclusions and perspectives

Retracking

Optimization problem (least squares)

$$
\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \boldsymbol{F}(\boldsymbol{\theta})=\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \frac{1}{2} \sum_{i=1}^{N}\left[y_{i}-s_{i}(\boldsymbol{\theta})\right]^{2}
$$

where

- $\boldsymbol{y}=\left(y_{1}, \ldots, y_{N}\right)^{T}$ is the observed multi-look echo
- $s=\left(s_{1}, \ldots, s_{N}\right)^{T}$ is the proposed analytical SAR model
- $\boldsymbol{\theta}=\left(P_{u}, \mathrm{SWH}, \tau\right)^{T}$ is the unknown parameter vector
- $N=104$ is the number of samples

Possible algorithms

- Newton-Raphson algorithm (MLE) : used by CNES
- Levenberg-Marquardt algorithm : used by ESA (in SAMOSA)

An analytical model for Doppler altimetry and its estimation algorithm

L Validation (synthetic data + Cryosat waveforms)

Plan

Introduction

Proposed analytical model

Retracking

Validation (synthetic data + Cryosat waveforms)

Conclusions and perspectives

Validation on synthetic data (1) Conventional and Doppler altimetry

An analytical model for Doppler altimetry and its estimation algorithm

L Validation (synthetic data + Cryosat waveforms)

Validation on synthetic data (2)

Conventional and Doppler altimetry

Standard Deviation (Epoch)

Standard Deviation (SWH)

An analytical model for Doppler altimetry and its estimation algorithm

-Validation (synthetic data + Cryosat waveforms)

Validation on synthetic data (3)
Comparison between CNES and analytical models

Epoch bias
SWH bias

- Constant bias for $\tau(\approx 6 \mathrm{~cm})$
- Small bias for SWH

An analytical model for Doppler altimetry and its estimation algorithm

L Validation (synthetic data + Cryosat waveforms)

Validation on CRYOSAT Echoes (1)
 Example of estimated echo

An analytical model for Doppler altimetry and its estimation algorithm

-Validation (synthetic data + Cryosat waveforms)

Validation on CRYOSAT Echoes (2)
 Comparison between CNES and analytical models (Bias)

- August 2011 data
- Processed by CPP-CNES

Epoch bias

blue curves: $\hat{\boldsymbol{\theta}}_{1}-\hat{\boldsymbol{\theta}}_{2}$
SWH bias

Validation on CRYOSAT Echoes (3)

 Standard deviations for the estimated SSHA parameter.

Pseudo-LRM vs Anal. Doppler

CNES Doppler vs Anal. Doppler

- The Doppler cloud is below the LRM cloud (gain ≈ 1.27)
- Similar results for analytical and CNES models
- > 94% of the data have SWH <4 m

Validation on CRYOSAT Echoes (4)

Averaged standard deviations for the estimated SSHA parameter.

Pseudo-LRM (CNES), Anal. Doppler and CNES Doppler

An analytical model for Doppler altimetry and its estimation algorithm

Plan

Introduction

Proposed analytical model

Retracking

Validation (synthetic data + Cryosat waveforms)

Conclusions and perspectives

Conclusions and perspectives

Conclusions

- An analytical model based on a geometrical approach
- Good agreement between the analytical and CNES Doppler models
- Fast waveform generation and parameter estimation

Perspectives

- Use the proposed model and estimation algorithm to analyze the performance of Doppler altimetry (versus the number of Doppler bands, ...)
- Validate the proposed model by using additional real datasets

An analytical model for Doppler altimetry and its estimation algorithm

End

Thank you for your attention

REFERENCES

[1] G. Brown, "The average impulse response of a rough surface and its applications", IEEE Trans. Antennas and Propagation, vol. 25, no. 1, pp. 67-74, Jan 1977
[2] Yang Shuang-Bao, Liu He-Guang, Xu Ke, and Xu Xi-Yu, "The mean echo model and data process of SAR altimeter", in IGARSS-11, Vancouver, Canada, August 2011.
[3] L. Phalippou, and V. Enjolras, "Re-tracking of SAR altimeter ocean power-waveforms and related accuracies of the retrieved sea surface height, significant wave height and wind speed ", in IGARSS-07, Barcelona, Spain, July 2007.
[4] K. Raney, "The delay/Doppler radar altimeter", IEEE Trans. Geosci. and Remote Sensing, vol. 36, no. 5, pp. 1578-1588, Sep. 1998.
[5] A. Garcia and al., "Study of the origins of the σ^{0} Blooms", M.S. in Electrical and Computer Engineering, Virginia Polytechnic Institute, June 1999.

Analytical model (3 parameters)
$\operatorname{FSSR}(k, n)=P_{u}\left(\frac{2 h}{t_{k} c}\right)^{3} \exp \left\{-\frac{4}{\gamma}\left[1-\left(\frac{2 h}{t_{k} c}\right)^{2}\right]\right\}\left[\frac{\phi(k, n)-\phi(k, n-1)}{\pi}\right]$

- $k=1, \cdots, 104$ (gates)
- $n=1, \cdots, 64$ (frequencies)
- $t_{k}=\frac{2 h}{c}+k T-\tau$ for $k>\frac{\tau}{T}$
- $\phi(k, n)=\arctan \left(\frac{y_{n}}{\sqrt{\rho^{2}(k)-y_{n}^{2}}}\right)$
- $y_{n}=\frac{h \lambda}{2 v_{s}} f_{n}$
- $\rho(k)=\sqrt{\left(\frac{t_{k} c}{2}\right)^{2}-h^{2}}$
- τ : is the epoch
- P_{u} : is the amplitude of the waveform
- h : is the altitude of the satellite
- c : is the speed of light
- γ : is the antenna beamwidth parameter
- v_{s} : is the satellite velocity
- f_{n} : is the Doppler frequency
- λ : is the wavelength

Levenberg-Marquardt algorithm

Optimization problem

$$
\underset{\boldsymbol{\theta}}{\operatorname{argmin}} \boldsymbol{F}(\boldsymbol{\theta})=\frac{1}{2} \sum_{i=1}^{N} f_{i}^{2}(\boldsymbol{\theta}), \text { with } f_{i}(\boldsymbol{\theta})=\left[y_{i}-s_{i}(\boldsymbol{\theta})\right]
$$

Levenberg-Marquardt algorithm

- Descent algorithm in a direction \boldsymbol{h}, i.e., $\boldsymbol{\theta}^{(k+1)}=\boldsymbol{\theta}^{(k)}+\boldsymbol{h}$;
- Elimination of the nonlinearity by the use of a first order Taylor expansion of \mathbf{f} leading to

$$
\boldsymbol{F}(\boldsymbol{\theta}+\boldsymbol{h}) \simeq \boldsymbol{L}(\boldsymbol{h})=\boldsymbol{F}(\boldsymbol{\theta})+\boldsymbol{h}^{T} \boldsymbol{J}(\boldsymbol{\theta})^{T} \mathbf{f}+\frac{1}{2} \boldsymbol{h}^{T} \boldsymbol{J}(\boldsymbol{\theta})^{T} \boldsymbol{J}(\boldsymbol{\theta}) \boldsymbol{h}
$$

where \boldsymbol{J} is the gradient of f according to $\boldsymbol{\theta}$.

- \boldsymbol{h} is obtained by minimizing $\boldsymbol{L}(\boldsymbol{h})$

$$
\left(\boldsymbol{J}(\boldsymbol{\theta})^{T} \boldsymbol{J}(\boldsymbol{\theta})+\mu \boldsymbol{I}\right) \boldsymbol{h}=-\boldsymbol{J}(\boldsymbol{\theta})^{T} \mathbf{f}
$$

where μ is a regularization factor.

Analytical model for σ_{0} blooms ${ }^{5}$

$$
\begin{gathered}
\operatorname{FSSR}(t)=A\left(\sigma_{1}\right) \exp [f(t, \xi)] I_{0}[g(t, \xi)] \\
+B\left(\xi, \sigma_{1}, \sigma_{2}\right)\left\{I_{0}[g(t, \xi)] \arccos \left(\frac{d}{\sqrt{c h t}}\right)+\sum_{k=1}^{\infty} \frac{1}{k} \cdots\right\}
\end{gathered}
$$

5. A. Garcia, G. Brown and al., Study of the origins of the σ^{0} Blooms, Master of science, Virginia Polytechnic Institute, June 1999.

