
Conclusions
A new parameterization of the observation error covariancematrix has been proposed, which:

• is based on an augmented observation vector approach (with gradients of observations here);

• represents some types of spatial correlations between observation errors;

• preserves the numerical efficiency of Ensemble filters schemes.

This parameterization has been used to study the impact of SSH observation correlations on SSH and velocity
analysis. It has been proven accurate and efficient.

This work was conducted as part of the MERSEA project funded by the E.U. (Contract No. AIP3-CT-2003-502885), with additional
support from CNES. The calculations were performed with the support of IDRIS/CNRS.
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Application to altimetry in the North Brazil current
Experiment:A 5-year simulation of the circulation in the North Brazil current region is performed with a
regional configuration of the NEMO model. The 300 output snapshots (one every 6 days) determine thetrue
states. The mean of this ensemble is taken as thebackground state (see Figure 2, upper panel). To parameterize
the background error covariance matrix, we use the covariance of 59 snapshots (one per month over 5 years,
except those that are less than 1 month away from the true state). Figure 2, bottom panel, illustrates what the
square root of the matrix diagonal looks like.

As observation, Sea Surface Height (SSH) is ob-
served over the full domain, with a4 cm error stan-
dard deviation.Two observation vectorsare gen-
erated from the true state: a first one, by adding un-
correlated observation noise, and a second one, by
adding a correlated observation noise, with a covari-
ance matrix similar to Eq. 3 for the 2-dimensional
case. The noise is scaled to have a uniform standard
deviationσ = 0.04 m. The observation error covari-
ance is parameterized either with a diagonal matrix,
or with a non-diagonal matrix, following the method
described previously.
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Figure 2: Mean (top panels) and standard devia-
tion (bottom panels) of the 5 years simulation, for
the sea surface height (in m, left panels), and sea
surface velocity (in m/s, right panels).

Uncorrelated errors
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Observation errors are spatially uncorrelated, and
R is diagonal. Figure 3 on the left shows the error
standard deviation, as measured using the ensem-
ble (top panels), and as estimated by the scheme
(the square root of the diagonal ofPa, bottom
panels). Both are consistent for altimetry (in m,
left panels) and for velocity (in m/s, right panels).

Correlated errors, with diagonalR parameterization

Observation errors are spatially correlated, butR is
taken diagonal. Figure 4 on the right displays the
same fields as Figure 3, for this experiment. The
inappropriate parameterization ofR leads to a sig-
nificant discrepancy between the errors estimated by
the ensemble and by the error modes.
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Correlated errors, with consistentR parameterization
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Observation errors are spatially correlated, andR

is parameterized using the observation gradient
method. The coherence between errors estimated
with the ensemble and with the error modes is re-
stored. Residual errors are higher than in the un-
correlated case for altimetry, but not much for ve-
locity. Correlations in observations of altimetry
actually provide quantitative information on ve-
locity.

Linear transformation of the
observation vector to simulate correlations
Rationale

We consider a observation transformation matrixT. Define

• y+ = Ty, with covariance matrixR+;

•H+=TH the transformed observation operator.

By computing the new incrementδx+ using Eq. 2, it can be shown that it is equivalent to
assimilate(y+,R+) and(y,R) if y+ = Ty andR−1 = TTR+−1T.

Example of application: gradient operator in one dimension

Let us introduce the transformationy+ = Ty =

[

T1
T2

]

y whereT1 is the identity matrix,

T2 the gradient operator,T2,ij =
δij−δi−1,j

∆ξ
. If R+ is homogeneous, i.e.R+ =

[

σ20I 0

0 σ21I

]

,

thenR verifies

R−1 =
1

σ20
I +

1

σ21∆ξ2
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(3)

and it can be proven that this is a consistent discretizationof the inverse of the covariance
function

R(ρ) =
σ20
2
exp

(

−
|ρ|

ℓ

)

with ℓ =
σ0

σ1
(4)

Figure 1: Covariance matrices obtained numerically (usingEq. 3) and analytically (Eq. 4)
with σ20 = 4, σ21 = 1, ∆ξ = 0.8.

Analysis update in square
root or ensemble Kalman filters
In Ensemble Square Root Filters (ESRF), the covariance matrix is decomposed asPf =

SfSf
T

. The ESRF correction is either calculated with (using a serial processing of obser-
vations;Houtekamer and Mitchell, 2001)

δx = Sf (HSf )T
[

(HSf )(HSf )T +R
]−1

(y −Hxf ), (1)

or with a prior transformation featuringΓ = (HSf )TR−1(HSf ) (Pham et al., 1998),

δx = Sf [I + Γ]−1 (HSf )TR−1(y −Hxf ). (2)

In the first case, the serial processing implies that observation errors are uncorrelated (R is
diagonal); In the second case, as the inverse ofR is required,R is often considered diagonal
for simplicity, even if observations are actually correlated.

Introduction
The Kalman filter is a widely spread data assimilation methodin oceanography. The stan-
dard Kalman filter observational update requires the inversion of the innovation error covari-
ance matrix, what is prohibitive regarding its size. Most implementations of the Ensemble
Kalman filter circumvent this difficulty assuming the diagonality of the observation error
covariance matrix, what makes the analysis calculation numerically tractable. However,
when observation errors are actually correlated spatially, such hypothesis yields too much
weight to the observations, and may lead to an inappropriateuse of the observations. Spatial
altimetric measurements, because they are performed alongtracks, are very likely subject
to spatial error correlations. In this presentation, we describe a parameterization of the ob-
servation error covariance matrix that preserves its diagonal shape, but represents a simple
first order autoregressive correlation structure of the observation errors. This parameteriza-
tion is based upon an augmentation of the observation vectorwith gradients of observations.
Numerical applications to ocean altimetry show the detrimental effects of specifying the
matrix diagonal when observations errors are correlated, and how the new parameterization
not only removes the detrimental effects of correlations, but also makes use of these cor-
relations to improve the data assimilation products. A detailed presentation is available in
Brankart et al. (2009).
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