Corsica: a multi-mission absolute calibration site

P. Bonnefond⁽¹⁾, P. Exertier⁽¹⁾, O. Laurain⁽¹⁾, A. Guillot⁽²⁾, T. Guinle⁽²⁾, N. Picot⁽²⁾, P. Féménias⁽³⁾ ⁽¹⁾OCA/Geoazur, Sophia-Antipolis, France ⁽³⁾CNES, Toulouse, France ⁽³⁾ESA/ESRIN, Frascati, Italy

OSTST meeting - October 8-11, Boulder, CO

esa

Integrated effect of the land contamination over the full set of data available

This effect is at the level of 8 mm/km. As typical sea surface slopes of 1–10 microradians lead to currents at the level of 0.1-1.0 m/s at mid latitude (Stewart, 2008), the estimated slope due to land contamination (8 microradians) can produce artificial current of 0.8 m/s in the coastal areas (<10 km): about a gulf stream...

Site / Instrument Slope Bias differences (mm/km) (mm) Senetosa (5 km to 10 km) ALT-B (TOPEX/Poseidon) +2.4+4.6+7.2+7.6POSEIDON-2 (Jason-1)

POSEIDON-3 (Jason-2	+8.6	+6.1
Ajaccio (RA-2, Envisat)	10000	~+30
7 km to 13 km	+9.1	
13 km to 19 km	-7.7	
19 km to 22 km	+6.8	
*estimated from the area where	altimeter should	not be contaminated:

here altimeter should not be contaminated: 10 km to 20 km at Senetosa and only at 13 km for Ajaccio (see text in the beginning of section 3.1.1 for details).

M

Ν

Α

Ο

Ν

- (0) SSH from altimetry needs to be corrected from geoid
- From GPS measurement (GPS aboard a zodiac located under the track, calenv):
 - (1) Using geoid correction to average all the altimetric SSH (noted mean in the following)
 - (2) Computation at PCA = no need to correct from geoid (noted PCA in the following)

8

The huge value of the bias (~-4.5m) is due to the fact that the internal delay was not applied in the current CNES reprocessed products

The standard deviation of the time series (~30mm) for either SARM or PLRM is at the level of Jason-2 one (35mm) even on this short sample.

Corsica Absolute Altimeters Calibration

Α

a

C

0

S

Δ

R

M

- C

The huge value of the bias (~-5.3m) is due to the fact that the internal delay was not applied in the current CNES reprocessed products

The standard deviation of the high-rate (~60mm) is at the level of Jason-2 one on such sea state condition (SWH=~2m).

11

Corsica Absolute **Altimeters**

Н

2 Α

Calibration from Corsica

Absolute biases over the whole data sets:

Jason-2: -4 ±4 mm (GDR-D) Jason-1: +77 ±3 mm (GDR-C) T/P ALT-A: 0 ±8 mm (MGDR⁺⁺) T/P ALT-B: 0 ±4 mm (MGDR⁺⁺) T/P POS-1: -12 ±10 mm (MGDR⁺⁺) EnviSat: +447 ±7 mm (GDR-C) ERS-2: -60 ±18 mm (OPR-2) SARAL: -65 ±5 mm (IGDR-T)

Range:

Configuration of the Corsica calibration site offers a unique opportunity to test and validate new altimeter technology or modes and retracking algorithms

SARAL/AltiKa and CryoSat-2 (SARM) improves the data quality up to 3-4km from the coast (compared to ~10km for Jason) SARAL/AltiKa bias stability (+5mm) for only 6 months with a repeatability of 35-d is equivalent to Jason ones over several years with a 10-d repeatability

Wet tropospheric corrections:

Jason-1&2

No significant drift detected from JMR/GPS and AMR/GPS comparisons. Better agreement between GPS and coastal path delays (EPD) from AMR and JMR

EnviSat

No clear impact of the land contamination detected

Single site could not afford the GCE and local systematic errors ⇒Multiple calibration sites are needed