

Validation Exercise over German Bight (Open Sea)

S. Dinardo¹, B. Lucas², L. Fenoglio³, R. Sharroo⁵, J. Benveniste⁴

(1) SERCO/ESRIN, (2) DEIMOS/ESRIN, (3) Darmstadt University of Technology, (4) ESA/ESRIN, (5)Eumetsat

OUTLINE

The presentation is structured in the following points:

- Introduction/Heritage
- Dataset Used
- Validation Methods
- Results
- Conclusions

SAMOSA HERITAGE

- **SAMOSA MODEL**: Physicallybased model developed by Starlab from first principles
- Analytical (by Bessel Functions) solutions to model the Delay Doppler Maps (DDM) for the full span of Doppler Frequencies
- Model depends on epoch, significant wave height, Pu, surface rms slope, and mispointing angle(s),
- The model independent variables are the Doppler Frequency and the Time Delay
- The waveforms are retracked by Bounded Least- Square Fitting Algorithm (Levenberg-Marquard)

Looks Number

5

ESRIN KNOW HOW and SAR DATA PRODUCTION

ESRIN EOP-SER Section, for validation purposes and preparation to Sentinel-3 mission (**SAR Retracker Algorithm Definition**), implemented an ESRIN SAR Processor Prototype in order to Delay-Doppler process CryoSat FBR data and re-track Delay-Doppler Echoes

- SAR/SARin FBR/L1b DATA Archiving and Cataloguing
- SAR/SARin L1b & L2 Processor Prototype -Input: CRYOSAR SAR FBR DATA
- -Coding Language: MATLAB
- -At L1b, Standard Delay-Doppler Processing (description
- on line in <u>https://wiki.services.eoportal.org/tiki-</u>

download wiki attachment.php?attId=2540)

- -At L2, Re-tracker with SAMOSA-Analytical Model using
- Levmar Least Square Estimator

-Output L1b \rightarrow Radar Echogram

-Output L2 \rightarrow SLA (W/O SSB), SSH , SWH,

sigma0, wind speed

Cuba Island

Prepared by Solvatore Dinardo Reference Isono z Revision z Date of Isono o2/05/2013 Status Approved/Applicable Document Type TN Distribution

DATASET USED in the Validation

DATASET USED in GERMAN BIGHT

WE COMPARE ALTIMETERIC PARAMETERS (SLA, SWH, U10) IN SAR MODE (from ESRIN Processing) and IN PLRM MODE (from RADS Database) for 2011-2012 time
DATA IN OPEN OCEAN ONLY (> 10 KM FROM COAST)

PROCESSING CONFIGURATION

ESRIN SAR PROCESSING CONF AT L1b

- □ A Pre-FFT Zero-Padding in range is applied in order to avoid aliasing for low-SWH conditions (Jansen's sampling)
- A Doppler weighting (Hamming) is applied only over land and in coastal zone (Distance to land >10 km => weighting off,Distance to land <10 km => weighting on)
- Noisy Stack Looks ruled out from the multi-looking (stack thresolding)
- Multilooked waveform posted at same time tag than in CryoSat-2 Kiruna PDGS products

ESRIN SAR PROCESSING CONF AT L2

- SAMOSA Model generation: SAMOSA v3 (see last slide for ref)
- Roll/Pitch mis-pointings (from platform) in input to retracking scheme and platform values are compensated for biases
- Thermal Noise estimated a priori and fed as input in the retracking algorithm
- SAR Multilooked Echo Model generated using the same number of looks used in generating the SAR input Waveform
- □ Range PTR Alpha_p set to 0.513 (RADS PLRM Value)
- □ Slope/Vertical Speed Effect Switched on

Method of regional comparison

We compare:

□ SSH/SLA,

🗖 SWH,

□ WIND SPEED (U10),

Inter-comparison of Altimetry Data:

C2/PLRM (extracted from RADS database) versus C2/SAR (processed in house at ESRIN) along tracks

Co-location between RADS PLRM and ESRIN SAR measuremet can not be perfect (i.e. 1 Hz PLRM and SAR meaurement not posted at same time and position)

□ Max permitted time difference is ± 0.5 second

> In-situ data:

- SWH C2 versus in-situ SWH AWAC data (Acoustic Wave and Current Meter, FINO-3 Platform,)
- SSH C2 versus in-situ GPS@TG at Helgoland tide gauge

RESULTS OVER OPEN SEA: Sea Level Anomaly

Validation against in situ data: **SSH**

SSHi_HELG[m]

1Hz SSH Precision

RESULTS OVER OPEN SEA: Wave Height

HISTOGRAM PLOT SWH

Validation against in situ data: SWH

SWH_F3[m]

RESULTS OVER OPEN SEA: Wind Speed

WIND SPEED RETRIEVAL

- Received Power Level corrected for AGC, AGC setting & PTR Gain Drift
- □Sigma nought calculated from Pu inverting SAR Radar Equation (i.e. now using SAR Footprint);
- CryoSat sigma nought compensated for a bias (-3.5 db) to align Envisat to CryoSat mission (Mission Inter-calibration)

Finally, Wind Speed extracted from sigma nought using the same wind model than Envisat (Abdalla's Model)

MAP of Wind Speed Diff. SAR vs. PLRM

SCATTER PLOT U10

Things to do

□ Spectral Analysis

- Release SAR L2 Data to the community (ESA GPod Service + SandBox Concept)
- Calculation of look-up table correction (LUT) for range and SWH (to mitigate impact of squared sinc PTR's approximation to a gaussian function)
- Minor SAMOSA SAR Echo Model Update (to improve fit with the input waveform)
- S-3 SAR Retracker DPM (v2.3.0) delivered to S-3 PAD Team (Pierre Femenias) with the configuration followed during the validation exercise

CONCLUSIONS

ESRIN SAR 1Hz Noise @SWH=2m:

- 0.89 cm for SSH
- 6.8 cm for SWH
- 0.077 db for Sigma nought
- 6 cm/sec for U10

- 2.3 cm for SSH
- 16.9 cm for SWH
- 0.31 db for Sigma nought

RADS PLRM 1Hz Noise @SWH=2m:

— 25 cm/sec for U10

SSH/SLA

Good consistency between SAR and PLRM (bias 1cm, std 6 cm, slope 0.97) Std wrt in-situ data at comparable level in SAR mode (19.8 cm) than in PLRM mode (20 cm)

🗆 SWH

Good consistency between SAR and PLRM (bias 3 cm, std 27 cm, slope 0.98) Std wrt in-situ data at comparable level in SAR mode (30 cm) and in PLRM mode (33 cm)

🗆 U10

Very Good consistency between SAR and PLRM (std 40 cm/sec, slope 1.00)