

Major events since last OSTST (September, 2012)

Project Milestones

Fifth Jason-2 REVEX : April 16-18, 2013

- → successful
- Joint Steering Group for extension of mission : September 19 → successful
- Satellite major events: 3 safe hold mode (SHM)!
 - 1/ March 25-29 / back to routine on PMA
 - 2/ March 30-April 5 / back to routine on PMB
 - 3/ September 5-12 / back to routine on PMB
- Payload major events
 - None
- Ground major events
 - Completion of GDR-D reprocessing
 - TM-NRT upgrade (HW + SW) in June 2013

- successful
- successful

Current OSTM/Jason-2 mission Status is OK

Safe Hold Mode periods (1/2)

• First SHM encountered by Jason-2 on March 25th, 2013

- At 03:31z, during a USG pass, Jason-2 transitioned to SHM mode (PMA → PMB)
- No BASICDIAG (or STACKSTATE) nor any FDIR packet was received
- Didn't occur over the SAA, « normal » environment conditions, all equipments were OK

Nominal SHM recovery operations on PMA

Mission stopped for 4 days and 16 hours Cycle 174 impacted from passes 43 to 161

• Second SHM occurred on March 30th, 2013

- At 22:37z, Jason-2 transitioned to SHM mode (PMA → PMB)
- No BASICDIAG (or STACKSTATE) nor any FDIR packet was received
- Didn't occur over the SAA, « normal » environment conditions, all equipments were OK
- RAM test on PMB was OK (no EDAC)

Nominal SHM recovery operations on PMB

Mission stopped for 5 days and 18 hours Cycles 174 impacted from passes 191 to 254 Cycles 175 impacted from passes 1 to 83

Root cause (identified in September): faulty word in RAM

Safe Hold Mode periods (2/2)

• Third SHM encountered by Jason-2 on September 5th, 2013

- At 09:26z, Jason-2 transitioned to safe hold mode (PMB → PMA)
- Root cause: a single memory error not corrected by EDAC process
- Occurred on SAA exit, all equipments were OK

Investigation on PMA; permanent error in RAM Investigation on PMB; no RAM error Nominal SHM recovery operations on PMB Mission stopped for 7 days and 5 hours Cycle 190 impacted from passes 185 to 254 Cycle 191 impacted from passes 1 to 115

To be noticed :

- There was no change on the payload configuration (same instruments, no need to recalibrate)
- Since 1st SHM in March, continuous activities with TAS to understand, investigate, develop tools....

Satellite status

The Jason-2 satellite bus is OK despite 3 SHM

- Command / control , RF : PMA : to be assessed PMB : OK

On-Board Software, Mass Memory, Jason2 Telemetry & Telecommand system

– Thermal aspects:

 Active thermal control works successfully and is sized with significant margins to meet further worst case conditions

– Electrical aspects :

Satellite power and consumption are within the power, consumption and energetic budgets

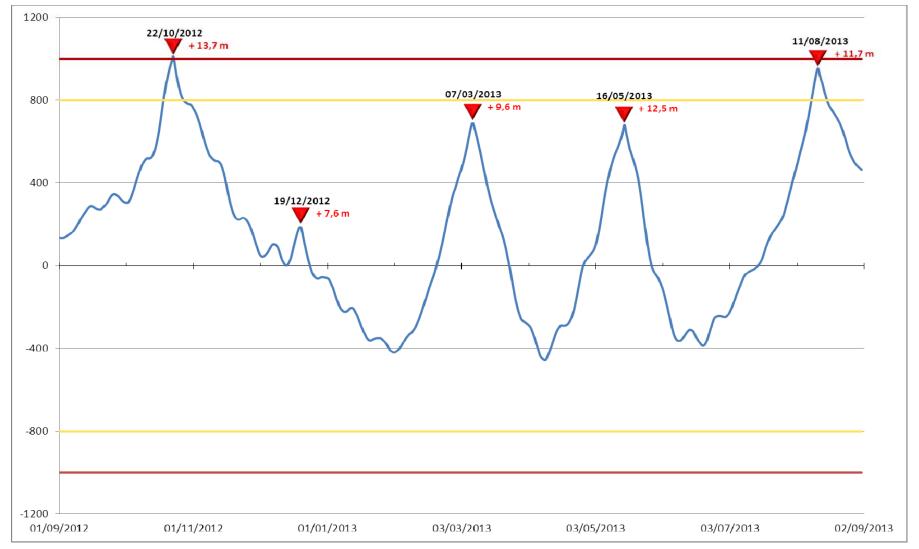
– AOCS (attitude and orbit control system) :

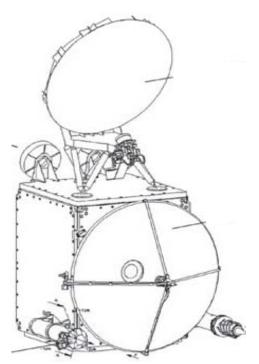
All AOCS units work nominally, AOCS control laws work as expected

Satellite activities :

Unused equipment destocking (gyro, STR)
STR monitoring
SADM expertise
Gyro calibration :

Jason-2 satellite is operational after more than 5 years in orbit

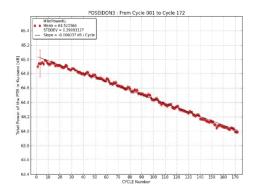


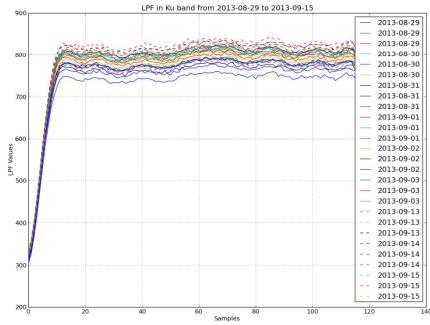

Payload Status since last OSTST (September, 2012)

Core Payload

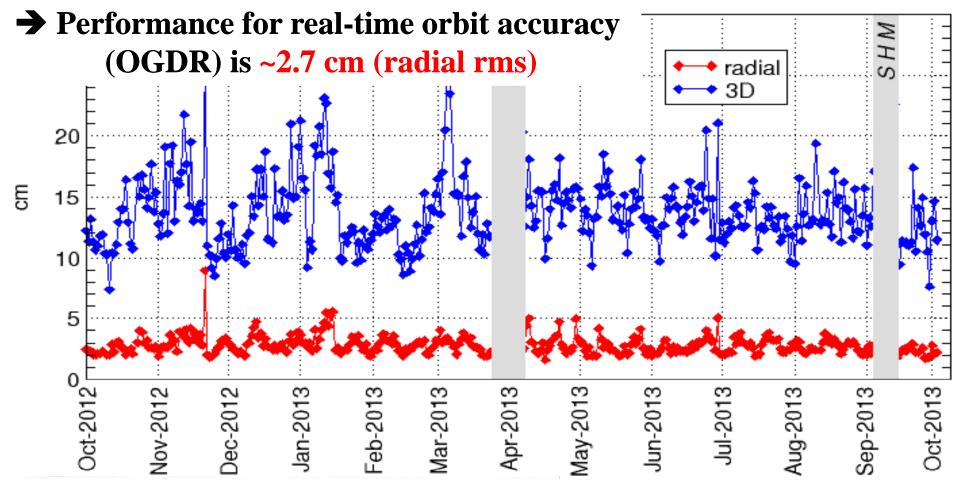
- POSEIDON3 OK
- Upgrade DEM (Kantanos area) due to relocation of transponder
- DORISAMRGPSPAOK
 - 12 resets on the period. Procedure in place with OPS team with no impact on operation
- No use of redundancy
- Same instruments since begining of mission
- Passengers
 - T2L2CARMEN2OK
 - 2 occurrences of the Experiment board blocking. Requires OFF/ON
 - LPT OK

core payload FULLY OPERATIONAL after more than 5 years in orbit passengers perform satisfactorily




Poseidon-3

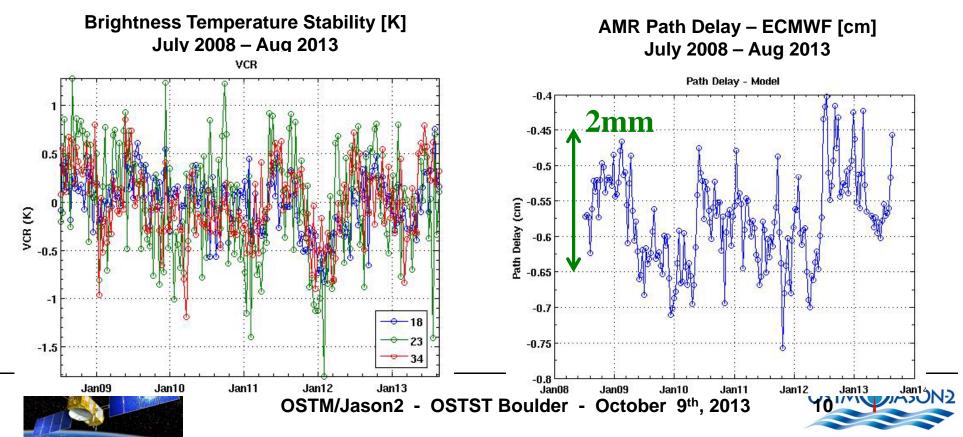
- Routine/Exceptional calibrations OK
- CNG: Good Stability (of the order of calibration accuracy)
- Availability = 100% over the period and altimeter not degraded by SHM...



DORIS

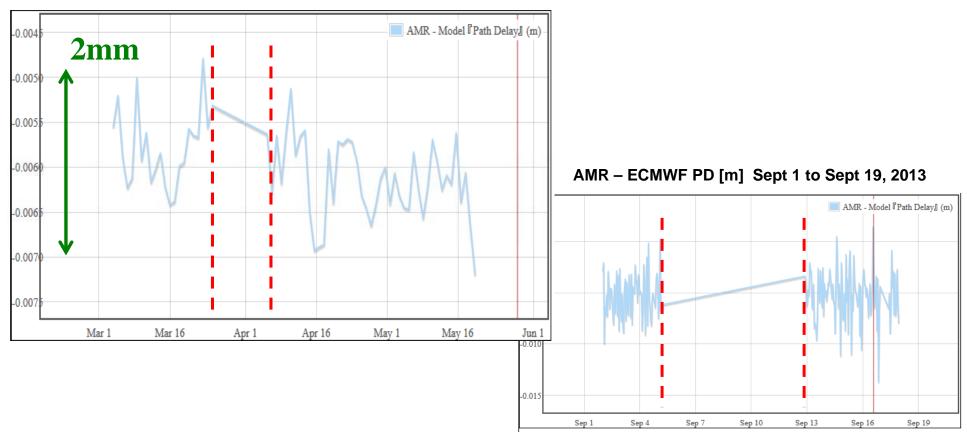
DIODE-MOE differences for Jason-2

daily RMS, maneuvers excluded



AMR

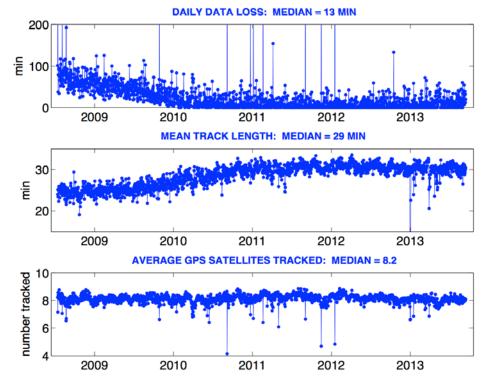
- AMR continues to perform nominally
- Availability = 100% over the period
- No calibration changes implemented since February 28, 2012
- With ARCS processing, the AMR is stable to < 1 mm/yr level over mission life ~ 6 mm/yr drift without ARCS processing

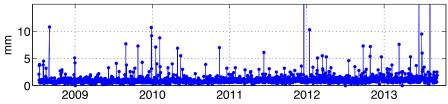

Safehold Events on AMR

No significant calibration changes observed after safehold events

AMR – ECMWF PD [m] March 1 to May 20, 2013

GPSP

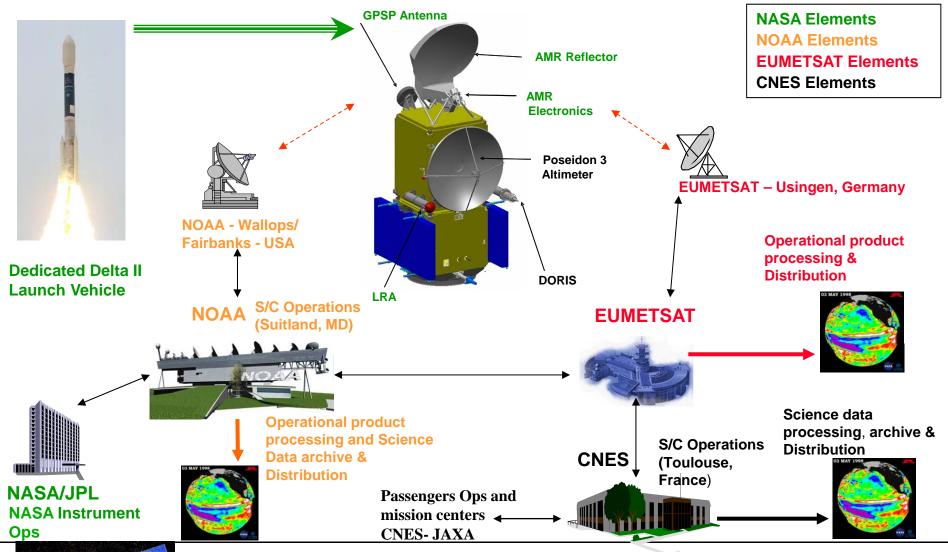



Tracking statistics

GPSP-A is healthy and is operating as expected

POD statistics

The GPSP continues to meet and exceed performance requirements



System Elements

Ground & Operations Status and performances

• Earth terminals:

– Usingen (USG) :

Wallops and Fairbanks (CDAS)

Control Centers :

J2CCC CNES Control center

OK

all the elements are OK

SOCC NOAA Control center

OK

all the elements are OK

Instrument Commanding and Monitoring Centers :

SSALTO for CNES instruments

JPL Mission facility for NASA/JPL instruments

Passengers Mission centers

OK

OGDR products Status and performances

NRT products (OGDR) produced by EUMETSAT Mission Center and NOAA/ESPC Mission Center

- Major changes in the period
 - New hardware Linux 64 bits (same as Jason-3, ready for merge)
 Operational in June 2013
- EUMPC: ~99% OGDR successful for PLTM1 acquired at USG
 - due to TM-NRT failure after September SHM → NOAA EmergencyBackup Mode activated
- NOAA ESPC: ~100% OGDR successful for PLTM1 acquired at CDAs
 - And also 100% OGDR successful for PLTM1 acquired at USG
- 100 % OGDR products archived, all disseminated via EUMETCast and via NOAA dissemination services
- NB: an annual data quality report is produced by NOAA, see
 ftp://ibis.grdl.noaa.gov/pub/johnl/ostm/j2_2012-2013_nrt_quality.pdf

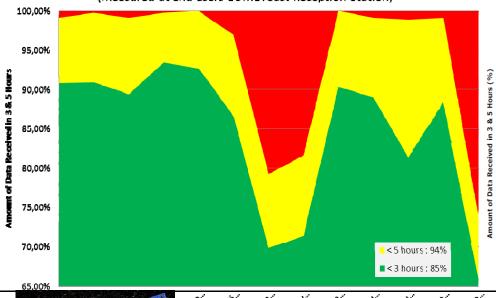
OGDR products Status and performances

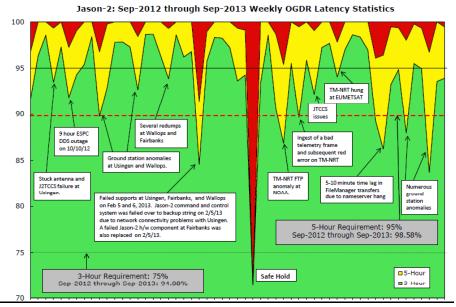
Operational Geophysical Data Record OGDR data latency :

- Requirements are:
 - 75% of OGDR data within 3 hours from sensing
 - 95% of OGDR data within 5 hours from sensing

Performance (measured at EUMETCast end user level)

85 % in less than 3 hours 94 % in less than 5 hours FLIMETSAT's Inputs


EUMETSAT's Inputs

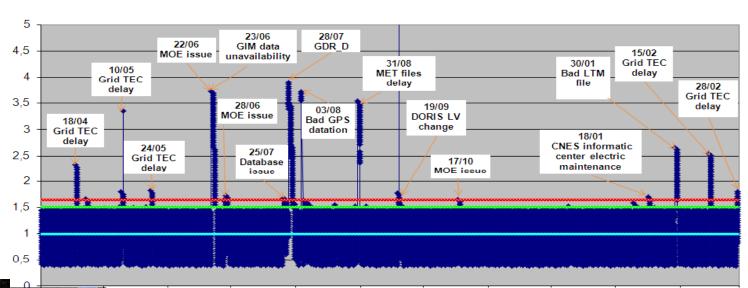

Performance (measured at NOAA ESPC production level)

94 % in less than 3 hours 98 % in less than 5 hours NOAA's Inputs

Jason-2: Sep-2012 through Sep-2013 Monthly OGDR Latency Statistics

(measured at end users EUMETCast Reception Station)

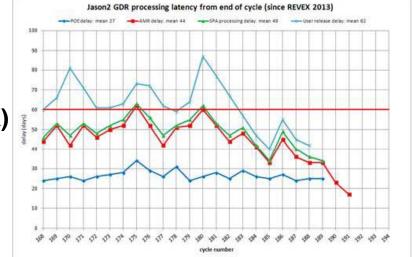
OSTM/Jason2 - OSTST Boulder - October 9th, 2013



IGDR products Status and performances

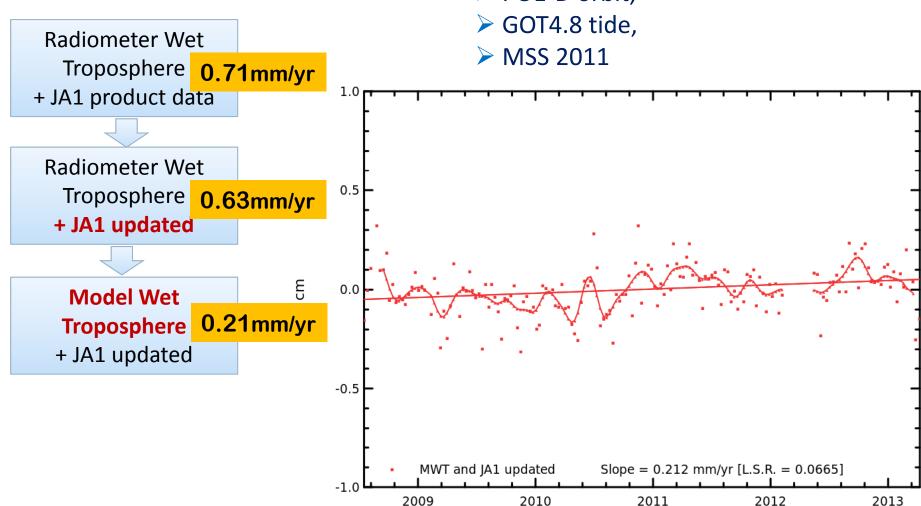
- Off line products produced by SSALTO CNES Mission Center
- Jason-2 IGDR processing is OK (CNES : 100% IGDR successful)
- Latency: more than 97% of products available in less than 1.5 day
- 100% IGDR products archived
- all disseminated via CNES AVISO and NOAA dissemination services

→ JASON-2 IGDR Latency Prod. < 1 day: 54,22% Prod. < 1.5 day: 96,41% Prod. <


GDR products Status and performances

- GDR produced by SSALTO Mission Center
- Jason-2 GDR processing is OK (latency OK)
 - Systematic cross checked validation by CNES and JPL
 - Cycle per cycle validation report made available to users on AVISO

- 100% GDR products archived
- all disseminated via CNES AVISO and NOAA dissemination services

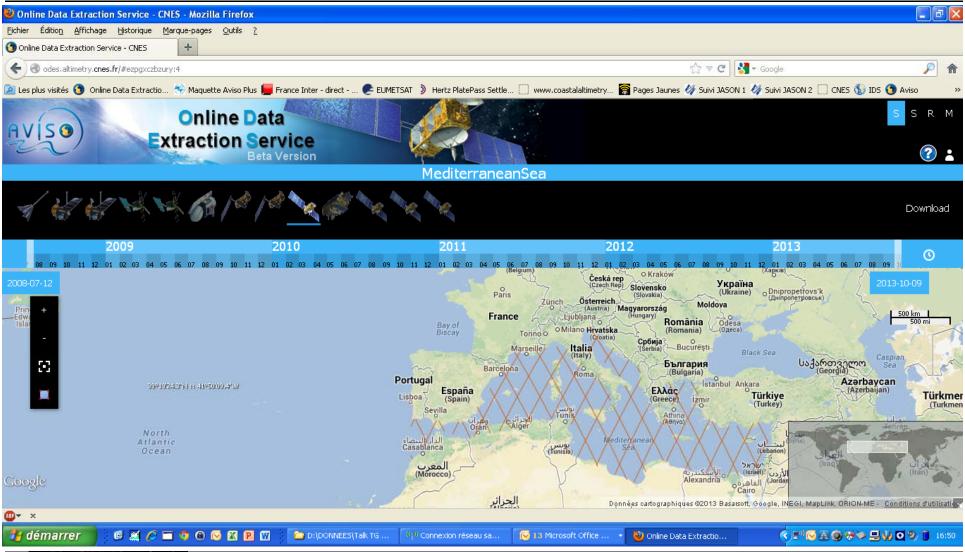


Global MSL monitoring

Difference of Jason-2 GMSL – Jason-1 GMSL computed over Jason-2 cycles

JA1 updated, homogeneous solutions for:

➤ POE-D orbit,

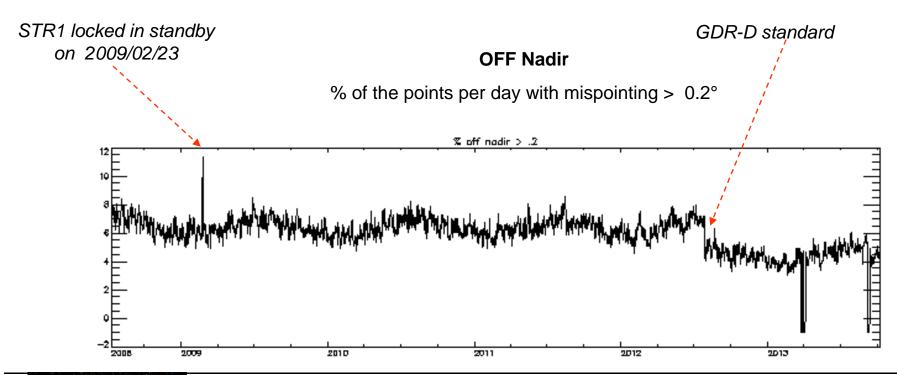


ODES

Error budget

A detailed document on Jason-2 error budget is available Updated every year for REVEX

	Error Specifications			Error (<10 days)			GOAL	
	budget	OGDR	IGDR	GDR	OGDR	IGDR	GDR	
Parameters and corrections for raw sea surface height calculation	Altimeter range	>1.7 cm ^{a,b,c}			>1.6 - 1.7 cm			1.5 cm ^{a,b,c}
	Ionosphere	1 cm ^{d,c}	0.5 <u>cm</u> d,c		>1 <u>cm</u> h / >0.2 cmi			0.5 <u>cm^{d,c}</u>
	Sea State Bias	3.5 cm	2 cm		>0.4 cm			1 cm
	Dry troposphere	1 cm	0.7 cm 0.4-0.7 cm		0.3-0.7 cm		0.7 cm	
	Wet troposphere	1.2 cm			>0.2 cm			1 cm
	Rms Orbit (radial component)	10 cm ^e	2.5 cm	1.5 cm	>3.7 cm	>1.7 cm	>1.0 cm	1.5 cm
Altimeter parameters	Significant wave height	10% or 50 cm ^f	10% or 50 cm ^f		13 cm			5% or 25 cm ^f
	Wind speed	1.6 m/s	1.5 m/s		1 m/s			1.5 m/s
	Sigma0 (absolute)	0.7 dB			0.11 dB			0.5 dB
Raw sea surface height		11 <u>cm</u> ^	3.9 cm ^A	3.4 cm ^A	> 4.2 cm ⁴ /-	> 2.6 cm ^A - 2.8 cm ^B	>2.1 cm ^A - 2.4 cm ^B	2.5 cm ^A
Final sea surface height		?	?	?	< 5.0 cm ^c	< 4.1 cm ^c	< 4.0 cm ^c	


System Requirements and Performances

Altimeter Antenna Pointing :

- Requirement : < 0.2°
- pointing performance stable since launch

Typical pointing value below 0.07°

System Requirements and Performances

- Data availability:
 - Requirement: The GDR shall contain 95% of <u>all possible</u> over-ocean data (acquisition and archive) during any 12 month period, with no systematic gaps.
- from October 2011 until August 2012

⇒ satellite unavailability 3.5% < 4% req

bus: 3.5% altimeter: 0.01% Doris: 0% AMR: 0.01%

⇒ ground unavailability ~0 % < 1% req

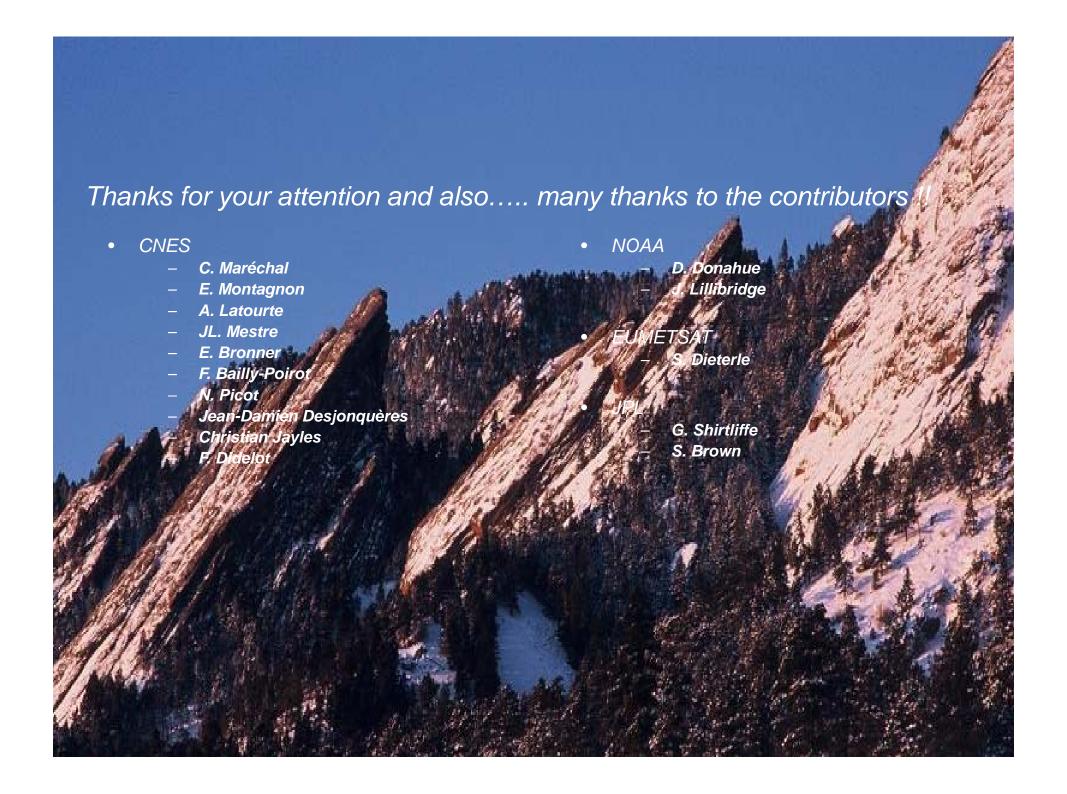
loss of data at station level

- → Global Jason-2 system availability: 96.5 %
- → GDR data availability vs theory (from annual CALVAL report)

All surfaces: 96.2 %

Over Ocean: 99.1 %

Conclusion



- Jason-2 satellite has still an excellent behavior
- All satellite and system performances requirements are fulfilled with large margins
- Operational Routine Phase is nominal
- All data available in GDR-D standard
- → the mission is extended for 2 years → June 2015

thanks to all the teams (CNES, NOAA, EUMETSAT, NASA/JPL) a system running fine, with an excellent availability level

