The Long-Term Altimeter Calibration Record From the Harvest Platform

Bruce Haines and Shailen Desai Jet Propulsion Laboratory, California Inst. of Tech., Pasadena CA

> George Born Colorado Center for Astrodynamics Research University of Colorado, Boulder CO

October 9, 2013 Ocean Surface Topography Science Team Meeting Boulder, USA

© 2013 California Institute of Technology. Government sponsorship acknowledged.

Harvest Platform

- NASA Prime Verification Site for High-Accuracy (Jason-class) Altimetry
 - Open-ocean location along 10-d repeat track (by design)
 - 10-km off coast of central California

Continuous monitoring for over two decades

- 365 T/P overflights spanning 10 years (1992–2002)
- 259 Jason-1 overflights spanning 7 years (2002–2009)
- 194 Jason-2 overflights and counting... (2008–).

• Experiment status

- New platform owner/operator
- NOAA water level systems
 - Underwater service trips: 10/2012 and 08/2013
 - Orifice corrosion/comm. issues being addressed
 - Topside maintenance coming in early November
- CU Lidar upgrade: 09/2011

New this year

- Additional Jason-2 (GDR-D) results.
- Complete reprocessing of GPS time series (trop, height).
- Regional calibrations for ENVISAT (Cancet et al., 2012).
- First SARAL/AltiKa results
- Successful retrieval of SWH from digital communications satellite signals (Shah et al., 2013)

Harvest Closure Analysis: Assumptions for Altimeter Leg

	NOMINAL	Jason-1 UPDATE		
MODEL	TOPEX/Poseidon	Jason-1	OSTM/ Jason-2	Jason-1
Orbital Height	GSFC std0905 (Lemoine et al., 2010)	GDR-C	GDR-D	GDR-C
Altimeter Range	Ku (MGDR)			Corrected GDR-C*
Wet troposphere	Repro (Brown et al., 2009)			JMR EPD (Brown)
Dry troposphere	MGDR			GDR-C
Ionosphere	MGDR: Ku (ALT), DORIS (POS-1)			GDR-C
Sea-state bias	MGDR			MLE4 from J2

* Provisionally corrects for errors in antenna reference point and altimeter characterization (Desjonquères and Picot, 2011)

Update Jason-1 to GDR-D Standard

Includes most GDR-D standards: e.g., provisional range corrections for J1 (Desjongueres and Picot, 2011); new MLE4 SSB model (based on Jason-2 data); Enhanced path delay correction for JMR (Brow et al.)

Wet Path Delay: Radiometer vs. GPS

EPD correction (Brown) interpolated directly to platform TCA (vs. t-5 s for std. correction)

Correction (mm)

Harvest: Ku-Band Ionosphere Calibration Using JPL GPS Ionosphere Maps

Jason-2 Radial Orbit Differences GDR-D POE — JPL GPS

Ascending Passes Harvest Mean = 1.2 mm Descending Passes

Red stars: dedicated calibration site; White circles: Tide gauges typically used for monitoring stability (Beckley et al., 2011)
 Mean at Harvest = 1.2 mm (POE high). Rate at Harvest = 1.0 mm (POE higher in time)

Jason-2 Radial Orbit Differences GDR-D POE — JPL GPS

Ascending Passes

Descending Passes

October 9, 2013

Platform Harvest Geodetic Height From Two Decades of Continuous GPS Monitoring

- Uncertainties in platform height and vertical (seafloor) motion among limiting error sources.
- Recent analysis¹ develops error budget from competing GPS solutions & fit strategies.
- Overall error budget for SSH bias and drift now includes this systematic error source.

Altimeter	Yærs	Ν	Bias (mm)		
			$\sigma_{\bar{\mathbf{x}}}$	σ_{v}	Estimate
ALT-A	1992–1999	154	3	14	$+8 \pm 14$
Poseidon	1992–2000	22	6	14	-2 ± 15
ALT-B	1999–2002	81	4	14	$+11 \pm 15$
Jason-1	2002-2009	208	2	15	$+96 \pm 15$
Jason-2	2008–2013	155	2	15	$+22 \pm 15$

Altimeter	Years	N	Drift (mm yr⁻¹)		
			$\sigma_{\bar{x}}$	σ_v	Estimate
ALT-A	1992–1999	154	1.4	2.8	$+2.1 \pm 3.1$
Poseidon	1992–2000	22	2.7	2.5	$+0.2 \pm 3.7$
ALT-B	1999–2002	81	3.3	1.1	-1.2 ± 3.5
Jason-1	2002–2009	208	0.9	0.6	-0.2 ± 1.1
Jason-2	2008–2013	155	1.6	2.0	$+6.2 \pm 2.6$

 $\sigma_{\bar{x}}$: one standard error from linear regression to time series of SSH biases. τ_{v} : estimated error from uncertainty in vertical location and motion of seafloor (Haines et al., 2013). *Estimate*: estimate of bias or drift with total error (quadrature sum of $\sigma_{\bar{x}}$ and σ_{v}).

1 Haines et al., Adv. Space Res., Volume 51, Issue 8, 2013

- Regional calibration approach developed for Harvest by Cancet et al.
 - Use neighboring inter-satellite crossovers.
 - Successfully demonstrated for ENVISAT.
- For SARAL, direct (PCA) approach used.
 - Des. pass 226 only 18 km from platform (open ocean).
 - Gradient from CLS2011 MSS (GDR-D/T).

Summary

- Current (GDR-D) Jason-2 SSH slightly biased (low confidence).
 - +22 ± 15 mm, including error in platform vertical
- Current (GDR-C) Jason-1 SSH biased high.
 - $+96 \pm 15$ mm, including systematic error from platform vertical.
 - Upgrades for next (GDR-D) product expected to reduce bias to 1-cm level.
- **TOPEX/Poseidon systems unbiased.** (Uncertainties include error in platform vertical.)
 - T/P ALT-B: +8 ± 15 mm
 - T/P ALT-A: +11 ± 16 mm
 - T/P POS: -2 ± 17 mm
- First SARAL/AltiKa bias estimates from three open-ocean passes (PCA ~ 18 km).
 - SSH bias of -58 ± 15 mm (formal error)
- No signs of significant SSH instabilities for legacy missions
 - Uncertainties in drift estimate range from 1 mm yr⁻¹ (for Jason-1) to 3 mm yr⁻¹ (for TOPEX ALT-A)
 - Small Jason-1 drift uncertainty due to long (7-yr) time series and good land-motion estimates.
 - Based on GPS retrievals, ~1 mm/yr drift persists in JMR EPD at Harvest.
- Increasing Jason-2 SSH biases warrant further investigation.
 - Drift of +6 ± 3 mm yr⁻¹ for nominal (GDR-D) calibration time series (including land motion uncertainty).
 - Drift reduced by 1 mm yr⁻¹ (to $+5 \pm 3$ mm yr⁻¹) by using GPS-based reduced-dynamic orbits.
 - Developments on tide-gauge front may provide insight on systematic in-situ errors.
 - Upcoming (November) servicing mission
 - Thorough rescrub of past data from redundant (Bubbler) and lidar sensors.
 - Recent data (since mid-2012) suggest possible return of lower bias estimates.
 - Other potential altimetric sources should not be discounted.

Evolution of Bias/Drift Estimates

BIAS (mm)	Seattle 2009	<i>Mar. Geod.</i> 2010	Lisbon 2010	San Diego 2011	Venice 2012	Boulder 2013
Jason-2	+174	+178	+176	+176	+15	+22
Jason-1	+94	+94	+87	+89	+94	+96
ALT-B	+14	+14	+10	+14	+12	+11
Poseidon-1	-10	-10	-5	+6	+0	-0
ALT-A	+1	+1	+7	+18	+11	+8
DRIFT (mm/yr)	Seattle 2009	<i>Mar. Geod.</i> 2010	Lisbon 2010	San Diego 2011	Venice 2012	Boulder 2013
DRIFT (mm/yr) Jason-2	Seattle 2009 -5	<i>Mar. Geod.</i> 2010 +15	Lisbon 2010 +8	San Diego 2011 +2	Venice 2012 +5	Boulder 2013 +6
DRIFT (mm/yr) Jason-2 Jason-1	Seattle 2009 5 2	Mar. Geod. 2010 +15 -2	Lisbon 2010 +8 -2	San Diego 2011 +2 -2	Venice 2012 +5 -1	Boulder 2013 +6 -0
DRIFT (mm/yr) Jason-2 Jason-1 ALT-B	Seattle 2009 5 2 -1	Mar. Geod. 2010 +15 -2 -1	Lisbon 2010 +8 -2 -3	San Diego 2011 +2 -2 -4	Venice 2012 +5 -1 -2	Boulder 2013 +6 -0 -1
DRIFT (mm/yr) Jason-2 Jason-1 ALT-B Poseidon-1	Seattle 2009 5 2 1 +3	Mar. Geod. 2010 +15 -2 -1 +3	Lisbon 2010 +8 -2 -3 +1	San Diego 2011 +2 -2 -4 -0	Venice 2012 +5 -1 -2 -0	Boulder 2013 +6 -0 -1 +0

• Impact of improved models for platform subsidence (from GPS measurements) is significant.

• Tide-gauge errors also contribute

Periodograms of SSH Bias Time Series

- Begin with uncorrected Ku- and C-Band Ranges
 - Compensate for troposphere using standard (GDR) approach
 - Use GDR-D range for Jason-2 (Jason-1 range corrected for ARP and characterization).
- Estimate SSH bias, drift and local SSB & iono. on each frequency simultaneously
 - SSB model (local to Harvest) is a simple percentage of SWH from nearby buoy ("BM1")
 - Ionosphere is a scaling of TECU from GIM (GPS-based): theoretical values are 2.2 (Ku) and 14.3 (C).

	Jason-1 Ku-Band	Jason-1 C-Band	Jason-2 Ku-Band	Jason-2 C-Band
SSH Bias (mm)	+25 ± 6	+10 ± 10	+24 ± 8	-20 ± 19
SSH Drift (mm/yr)	-2 ± 1	-2 ± 2	+4 ± 2	-18 ± 4
Local SSB (%)	4.0 ± 0.2	4.9 ± 0.3	3.7 ± 0.3	3.2 ± 0.7
lono. (mm/TECU)	2.2 ± 0.2	13.2 ± 0.3	1.1 ± 0.3	11.1 ± 0.6
Number	207	203	155	149
Postfit σ (mm)	29	46	29	59

Lidar Leads to New Insight on Behavior of Primary (Bubbler) Tide Gauge

Standard Bubbler Correction

Parke and Gill (1995)

Correction

Washburn et al (2011)

New Bubbler

$$SSH_{Bubbler_{Corrected}} = SSH_{Bubbler} + 0.031 \times (SWH - 1.5)$$

•For SWH > 1.5 m, else $SSH_{Bubbler_{Corrected}} = SSH_{Bubbler}$,

$$\Delta SSH = SSH_{Bubbler} - SSH_{Laser} + SSH_{Correction}$$

$$SSH_{Correction} = -B_0 + B_1 \times \left(\frac{1}{50 \text{ Hz average}}\right) + B_2 \times (SWH) + B_3 \times (Wind \text{ Speed})$$

Comparison of GDR-D and GDR-T for Common Cycles (N = 80)

Source of ∆SSH Bias (GDR-T to GDR-D):

Parameter	Bias (mm)	σ (mm)
∆Range_Ku*	-151	1
∆SSB_Ku	-31	4
∆lono_Ku	+6	1
ΔWet_Rad	+5	6
∆Orbit	+4	5
TOTAL	-167	11

* $\Delta Range_C = -149 \text{ mm}$

- GDR-D contains both MLE3 and MLE4 retracked data.
 - MLE4 is nominal
- MLE3 data increase scatter of SSH bias estimates
 - Due mainly to Ku range
- MLE3 data shift SSH bias upward
 - Due mainly to SSB

Source of ∆SSH Bias (MLE-4 to MLE-3):

Parameter	Bias (mm)	σ (mm)
∆Range_Ku	-9	32
ΔSSB_Ku	+31	4
∆lono_Ku	-6	6
TOTAL	+16	35

SSH Calibration Time Series with MLE3

October 9, 2013

OSTST Meeting

