On the impact of Saral/Altika wave data on the wave forecasting system of Météo-France

Lotfi Aouf, and Jean-Michel Lefèvre

Division Marine et Océanographie, Météo-France

Ocean Surface Topography Science Team (OSTST), Boulder 8-11 October 2013

1. Motivation
2. Data quality control (QC1 and QC2)
3. Assimilation and maintesults
4. impact of regional model
5. Conclusions

Improving the sea state forecast in high wind conditions

Snapshot on SWH from MFWAM-Global

Typhoons FITOW and DANAS generating high sea state on Sunday 6 October 2013 at 12:00 (UTC)

motivation

Evaluate the impact of the assimilation of Saral/Altika wave data on the wave forecasting System

- Test of small changes on QC procedure (consequence of PATCH-V1) : new thresholds values for σ0 and wave height
- Impact of using Saral/Altika wave data in regional wave model (high resolution MFWAM-EURAT01)

Saral/Altika wave data and QC procedure

- Saral NRT products are downloaded in NETCDF format from <u>ftp.saral.oceanobs.com</u> : period 31 March to 1 September 2013
- Quality control procedure is implemented to prepare the data the assimilation in the wave model :

Example of QC check for August 2013

ME Toujours un temps d'avance

Example of QC1 check (June and July 2013)

Before QC1 Nb of data : 3272808

After QC1 Nb of data : 2516442

→ ~23 % Saral Sig. Wave heights are rejected before the assimilation

Histograms of Saral sig. wave heights

Distribution of Saral data on wave model grid

Assimilation of altimeters

- → Optimal interpolation on SWH (Significant wave height)
- \rightarrow Correction of wave spectra using empirical laws and assumptions

Saral wave obs are collocated with model grid points : Super-observations

Example of 1-day global coverage of SARAL Sig. wave height (~5800)

Description of runs :

from 31 March 2013 to 1 August 2013

• Wave model set-up

- Wave model MFWAM (global coverage 0.5x0.5° irregular grid), wave spectrum in 30 frequencies (starting 0.035 Hz) and 24 directions
- ECMWF analyzed winds every 6 hours
- Assimilation time step 6 hours
- → Assimilation of Saral/Altika Sig. wave heights
- → Assimilation of Saral and Jason-2 sig. wave heights

→ Outputs from the operational forecasting system (MFWAM with assimilation of Jason 1 & 2)

 \rightarrow **Baseline** run of MFWAM without assimilation

Assimilation of Saral/Altika Sig. Wave heights Validation with Jason 1 &2

Assimilation of SARAL/Altika in MFWAM in different ocean basins : April to August 2013

Assimilation of Saral and Jason-2 in MFWAM in different ocean basins

Validation with Jason-1 : April, May and June (until 21)

VALIDATION OF SWH WITH BUOYS DATA

Data are collected from the JCOMM model intercomparison archive produced by J. Bidlot (ECMWF))

buoys locations

Validation with buoys Sig. Wave heights

NOASSI : without assimilation ASSI-SRL : assimilation of SARAL/Altika ASSI-SRL-JA2 : assimilation of SARAL and Jason-2 OPER : Operational MFWAM with assimilation of Jason-1 & 2

April-May-June 2013 (29005 collected data)

Perfomance of the assimilation of Saral/Altika at the peaks

Comparison with NDBC buoys located on North America : Jun-Jul-Aug 2013

Impact of the QC2 on the assimilation system **Experiment for August 2013** Bias = 0.06Same performance for **SI** = 11.1% both QC1 and QC2 **RMSE** = 11.3% The use of QC2 is affecting mainly **Slope = 1 .04** the shallow water areas (close to coastline: Intercept = -0.07 impact of using QC2 201308130000 80 0.15 60 0.1 40 0.05 -atitude (degrees) 20 0 -20 -0.05 -40 -0.1 -60 -0.15 -80

200

Longitude (degrees)

250

300

350

Difference between SWH of the assimilation with QC1 and QC2 (example of 1-day 20130812)

150

100

50

0

METEO FRANCE Toujours un temps d'avance

The assimilation of Altika in regional and high resolution MFWAM- EURAT01

Domain : 32°W-42°E and 20°N-72°N Grid resolution of 10km (irregular grid) Wind forcing from the atmospheric model ARPEGE-0.1° (every 3 hours) Boundary conditions from MFWAM-Global The assimilation is performed from 7 to 15 July 2013, with a step of 3 hours

1-day (by a step of 3 hours) difference of SWH from the Assimilation run and the operational MFWAM-EURAT01 (without assimilation)

Validation of the assimilation of Saral/Altika in MFWAM-EURAT01 : preliminary results

assimilation of Altika in MFWAM-EURAT01 201307130000

	ASSI	OPER
Bias	0.	0.07
Scatter Index(%)	14.5	15.9
RMSE	14.5	16.5
Collected	2343	

Statistical analysis

Orbit tracks of Jason-2 for the day 20130712

Comparison with Jason-2 Sig. Wave Heights 7-13 July 2013

Conclusions

■ The sea state forecast is well improved after using Saral/Altika Si significant wave height : thanks to the good quality of Saral wave data

Positive impact on the wave analysis and forecast : ready to be used operationnaly in MFWAM (Altika in BUFR format on the GTS today)

■ The use of Saral with Jason-2 showed very promising results (the SWH errors are greatly reduced SI<9% in the tropics)

- The use of QC2 is successful, more data are included in the system without degrading the performance
- Positive impact showed by the assimilation of Saral/Altika in regional model MFWAM-EURAT01. We look forward to implement the assimilation for cyclonc season at the Indian ocean MFWAM-La réunion

