

Regional CALVAL of Jason-2 and Envisat in Corsica and at Harvest

M. Cancet¹, B. Haines², P. Bonnefond³, E. Jeansou¹, F. Lyard⁴, P. Femenias⁵

¹NOVELTIS, Toulouse, France
 ²JPL/NASA, Pasadena, USA
 ³OCA/GEOAZUR, Sophia Antipolis, France
 ⁴OMP/CNRS/LEGOS, Toulouse, France
 ⁵ESA/ESRIN, Frascati, Italy

October 9, 2013

- OSTST meeting - 8-11 October 2013 - Boulder, CO -

Regional CALVAL method

Combination of:

Absolute CALVAL: Direct comparison between altimeter and tide gauge SSH (point C).

- ✓ Only for satellite passes flying over the calibration sites.
- ✓ Directly comparable to the absolute bias estimates computed by the local in situ calval groups (Corsica, Harvest, Bass Strait, Gavdos...)

Offshore CALVAL: Computation of the bias on offshore passes (points A & B)

- ✓ Following a succession of accurate mean sea surface profiles, combining several missions
- Using a high resolution mean sea surface to link the *in* situ and altimetry SSH

Regional CALVAL method

Generic method:

- Calibration of missions on new orbits
- ✓ After an orbit change (ex: interleaved TP & Jason-1, Envisat after October 2010)
- ✓ For orbits without dedicated calibration sites (ex: Sentinel-3).

→ Calibration of non-repetitive orbits

✓ Missions on non-repetitive or drifting orbits (ex: Cryosat, Jason-1 end-of-life).

Applicable to any calibration site: Corsica, Harvest Platform, Bass Strait, Gavdos...

Regional CALVAL method

Highly depends on:

- ✓ Good-quality SSH data (altimetry & tide gauge)
- ✓ Accurate mean sea surface profiles
- ✓ High resolution local mean sea surface (GPS survey) or accurate global MSS
- Ocean dynamics corrections: ocean tide and atmospheric effects between the offshore passes and the coast

Previously implemented in Corsica (Senetosa & Ajaccio) for Topex, Jason-1, GFO, Jason-2 and Envisat

- ✓ Jan et al, 2003
- ✓ Cancet et al, 2012

 $bias_{alti.tr3}(t) = (SSH_{B.tr3}^{alti}(t) - dyn_{B.tr3}) - (SSH_{TG.tr1}^{gauge}(t) - dyn_{TG,tr1})$ $+(\overline{SSH}_{TG,tr1}^{insitu} - \overline{SSH}_{C,tr1}^{insitu}) + (\overline{SSH}_{C,tr1}^{alti} - \overline{SSH}_{A,tr1}^{alti}) + (\overline{SSH}_{A,tr2}^{alti} - \overline{SSH}_{B,tr2}^{alti})$

Verification of the altimeter SSH stability

- Jason-2 (GDR-D)
- Envisat nominal orbit (GDR-C v2.1)
- Envisat drifting orbit (2010+, GDR-C v2.1)

at the calibration sites of

- Corsica
 - Senetosa
 - Ajaccio
- Harvest

Dedicated to

TP/Jason-1/2 Envisat (nominal orbit) TP/Jason-1/2

Corsica site

Ajaccio (SHOM):

1 tide gauge since 2002 \checkmark

Senetosa (OCA/CNES):

- 4 tide gauges (2 couples of twin instruments) since 1998
- Careful editing (NOVELTIS/OCA) \rightarrow
- \rightarrow Many outliers removed

→ Ajaccio: 1.5 year of bad-quality data (April 2008 – Sept. 2009)

Harvest site

- Tide gauge SSH time series entirely reprocessed and \checkmark checked between 2002 and 2012 (Many thanks, Bruce !)
- A few dubious periods removed \checkmark

(Haines et al, 2012)

Example of a period identified as « suspect » at Harvest – December 2006

	Jason-2	Envisat	Envisat 2010+		
Product version	GDR-D	GDR-C v2.1	GDR-C v2.1		
Period	Cycles 1-153 07/2008 – 08/2012	Cycles 7-93 06/2002 – 10/2010	Cycles 93-113 10/2010 – 04/2012		
Ionosphere	GIM	GIM: only correction available for the whole mission (S-band loss)			
Wet troposphere	 Corsica: ECMWF model (land contamination) Harvest: Radiometer (S. Brown) 	ECMWF model, fol not to use the radior in the GDR-C product	lowing recommendation neter correction provided ts		
Tides	 Corsica: COMAPI regional model (CNES) Harvest: FES2004 				
DAC	High resolution global simulation (LEGOS)				

The comparisons with the OCA and JPL results were systematically performed in the same conditions of corrections.

Jason-2 calval

GDR-D products \rightarrow bias expected ~0

Corsica (Senetosa & Ajaccio)

Harvest

Jason-2 calval in Corsica

Jason-2 bias (cm)	No ocear	n dynamic	s correction	With ocean dynamics correction (global DAC + COMAPI tide)			
Cycles 1 to 153 (GDR-D)	Mean	Std	Nb of cycles	Mean	Std	Nb of cycles	
Track 085 (absolute method)	0.0 ± 0.3	3.8	143	-0.2 ± 0.3	3.9	143	
Regional bias in Senetosa (mean)	-0.7	4.1	146	-1.0	4.1	146	
Regional bias in Ajaccio (mean)	-0.2	3.8	97	1.7	4.0	99	
OCA absolute bias in Senetosa	0.7 ± 0.4	3.5	95		1		

Jason-2 GDR-D SSH bias estimates in Senetosa - track 085

Jason-2 calval at Harvest

Jason-2 bias (cm)	No ocean	dynam	ics correction	With ocean dynamics correction			
Cycles 1 to 153 (GDR-D)	Mean	Std	Nb of cycles	Mean	Std	Nb of cycles	
Track 043 (NOVELTIS)	2.4 ± 0.3	3.2	148	2.5 ± 0.3	3.1	148	
Track 043 (NOVELTIS) common cycles with JPL (cycles 1 to 128)	1.8 ± 0.3	2.9	109	1.9 ± 0.3	2.9	109	
Track 043 (JPL) (cycles 1 to 128)	1.6 ± 0.3	2.8	109	/	/	1	

Jason-2 calval in Corsica and at Harvest

- ✓ Jason-2 GDR-D regional bias estimates close to 0 as expected
- ✓ Very coherent results at both sites
- ✓ Very good agreement with the other groups results (OCA & JPL)

+ First implementation in a region characterized by rough ocean conditions

+ Confirms the weirdness of the results in Ajaccio

→ Tide model ? Tide gauge ?
Specific local tide signal ?

Envisat calval (nominal and drifting orbits)

Envisat calval (nominal and drifting orbits)

Envisat bias (cm)	No ocean dynamics correction			With ocean dynamics correction		
CORSICA	Mean	Std	Nb of cycles	Mean	Std	Nb of cycles
Absolute bias in Ajaccio (tr130)	46.8 ± 0.8	5.5	52	46.9 ± 0.9	6.2	52
OCA absolute bias in Ajaccio	43.3 ± 0.7	3.1	18	1	/	/
Regional bias in Ajaccio (mean)	45.6	4.7	56	46.7	5.0	56
Regional bias in Ajaccio (mean) – 2010+	42.3	3.9	15	43.5	3.8	15
Regional bias in Senetosa (mean)	44.0	4.1	80	43.7	4.2	81
Regional bias in Senetosa (mean) – 2010+	41.6	4.5	17	42.0	4.3	17

Envisat bias (cm) - HARVEST With ocean dynamics correction	Mean	Std	Nb of cycles
Regional bias (mean) – Nominal	48.0	7.3	80
Regional bias (mean) – 2010+	49.8	6.5	17

- ✓ Land contamination effect in OCA's results
- ✓ Again, tide at Ajaccio in question
- ✓ Decrease of the bias in Corsica, increase in Harvest, including after 2010

Synergy with the global CALVAL

Conclusions

- ✓ Regional CALVAL = Link between the local and global cal/val methods
 - \rightarrow Consistency with the other groups
 - At the local scale: OCA and JPL results
 - ➤ At the global scale: CLS results
- ✓ Stability of the Jason-2 GDR-D products
- ✓ First absolute calibration of Envisat in Harvest !
 - \rightarrow East/West drifts of the Envisat GDR-C orbit
- ✓ First absolute calibration of the Envisat drifting orbit (2010+)

Perspectives

- ✓ First absolute calibration of Envisat in Bass Strait
- ✓ SARAL/AltiKa
- ✓ Any other current or future mission

Generic method: can be implemented anywhere, for any mission !