New global Mean Dynamic Topography from a GOCE geoid model, altimeter measurements and oceanographic in-situ data

M.H. Rio, S. Mulet, E. Greiner, CLS

N. Picot, CNES

A. Pascual, IMEDEA

CORES CENTRE NATIONAL D'ÉTUDES SPATIALES

INTRODUCTION

□ The Mean Dynamic Topography (MDT) is a key reference surface for the optimal exploitation of altimeter data.

□ It is the missing component that allows to estimate the ocean absolute dynamic topography (ADT) and the corresponding absolute geostrophic surface currents from the altimeter Sea Level Anomalies (SLA): ADT=MDT+SLA

□ It may be written as the difference between an altimeter Mean Sea Surface (MSS=mean sea level above a reference ellispoid) and a geoid height relative to the same reference ellipsoid. **MDT=MSS-Geoid**

□ However, due to the spectral differences of both surfaces (the MSS is known at few kilometer; present satellite-only geoid models resolve, with centimetric accuracy, geoid scales of 200-300 km (GRACE) to 100km (GOCE)) spatial filtering is needed.

□ MDT information at shortest scales may be brought by combination to oceanographic in-situ information as ARGO floats and drifting buoys velocities (Rio et al, 2004; 2005;2007;2011)

INTRODUCTION

INTRODUCTION

CMDT CNES-CLS09 → CMDT CNES-CLS13

MSS used for first guess	MSS CNES-CLS01	MSS CNES-CLS11						
Geoid model used for First Guess computation:	EIGEN-GRGS.RL02.MEAN based on 4 ^{1/2} years of GRACE data	n EGM-DIR-R4 based on 7 years of GRACE data and 2 years of reprocessed GOCE data						
Filtering used for First Guess computation:	Optimal filter (~400 km)	Optimal filter ~125km						
Buoy velocities dataset	15m drogued SVP drifters Period 1993-2008	SD-DAC SVP drifters, with or without the drogue - Period 1993-2012 Corrected for Wind slippage in case of drogue loss						
Ekman model	Parameters fitted over the 1993-2008 period, by latitude, year, and month (3 months moving window)	Parameters fitted over the 1993-2012 period, by longitude, latitude and month (3 months moving window) Computation of an Ekman model at 0m and at 15m depth						
T/S data	CTD, ARGO Period 1993-2008	CTD, ARGO (CORA3.4) Period 1993-2012						
Resolution	Global, ¼° (no Mediterranean)	Global 1/4° (including the Mediterranean Sea)						
OSTST, Boulder 2013								

At each position r and time t for which an oceanographic in-situ measurement is available: dynamic height h(r,t) or surface velocity u(r,t),v(r,t):

1- the altimetric height/velocity anomaly is interpolated to the position/date of the in-situ data.

2- the in-situ data is processed to match the physical content of the altimetric measurement (corrected from ekman current; add of barotropic contribution...).

3- the altimetric anomaly is subtracted from the in-situ height/velocity

$$\overline{h}_{93-99} = h_{insitu} - h'_{93-99}$$
 $\overline{u}_{93-99} = u_{insitu} - u'_{93-99}$ $\overline{v}_{93-99} = v_{insitu} - v'_{93-99}$

Final set of synthetic mean velocities

Final set of mean heights from the CORA3.4 T/S profiles

The GOCE only MDT (First Guess)

The CNES-CLS13 MDT

VALIDATION: COMPARISON TO INDEPENDENT SURFACE VELOCITIES

RMS differences between the ARGO floats surface velocities (YoMaHa) and altimeter derived velocities (expressed in % of Argo floats velocity variance)

Comparison to other existing MDT solutions

	MDT CNES-CLS13	MDT CNES-CLS09	MDT GOCE (First Guess)	MDT GLORYS2V1	MDT MAX08			
RMS U	44.6	46.1	46.7	47.0	46.3			
RMS V	52.4	53.2	55.0	55.8	54.0			
OSTST, Boulder 2013								

VALIDATION: Expected impact on altimeter data assimilation in the Mercator-Ocean system

SLA innovation computed during the latest Mercator-Ocean

reanalysis run (GLORYS2V3)

Difference between the MDT currently used at Mercator-Ocean for SLA assimilation and the CNES-CLS13 MDT

→ Similarities between the two plots mean that the use of the CNES-CLS13 MDT will lead to improvements of the altimeter SLA assimilation into the Mercator-Ocean forecasting system

CONCLUSIONS

□ A new global MDT is currently being computed at CLS/CNES

□ Compared to the previous solution (CNES-CLS09 MDT) the major improvements come from

➤ the use of one of the most recent satellite-only geoid model based on GRACE and GOCE data (EGM-DIR-R4)

The use of updated in-situ datasets

> The CORA3.4 T/S database for the computation of the ocean dynamic heights

>An updated dataset of drifting buoy velocities covering the period 1993-2012 including

•Drogued SVP drifters corrected for the 15m Ekman current

•Undrogued SVP drifter corrected for both the surface Ekman currents and direct wind slippage

□ First validation results show:

> An expected improvement of SLA assimilation into the Meractor-Ocean forecasting system by using the new MDT CNES-CLS13 solution

Improved quantitative comparison to independent in-situ data (surface velocity measurements from ARGO floats)

PERSPECTIVES

□ The CNES-CLS13 MDT will be publically available in November 2013

□ Also, further, extensive validation will be carried out

□ Specific work in the Arctic Ocean (new MSS or new method to compute directly ADT)

□ The MDT CNES-CLS13 will be used as reference surface for the generation of the next delayed-time altimeter ADT (Absolute Dynamic Topography) products that will be distributed through AVISO early 2014, based on the reprocessing of the entire altimeter data serie.

Computation of the MDT first guess

Drifting buoy data processing: Modelling Ekman currents

Ekman theory

Model

Rio and Hernandez, 2003

Wind stress from ERA INTERIM

Band pass filtered 30 hours - 20 days

 $\vec{u}_{\text{buov}} - \vec{u}_{\text{alti}}$

 β and θ are estimated through least square fit Dataset used for the CNES-CLS09 MDT computation: SVP Drifting buoys **flagged as DROGUED by the SD-DAC** for the period **1993-2008**

= | $(\tilde{\tau})$ $e^{i\theta}$

Drifting buoy data processing: Modelling Ekman currents

 β and θ computed over the global ocean by year

Strong dependency of β and θ parameters with time
✓ Increase with time of parameter β
✓ Decrease with time of |θ|

Direction of Ekman currents closer to wind direction

Rio et al, 2011

This was due to a failure in the SVP buoy drogue loss detection system:

Undetected undrogued drifter, directly advected by the wind in addition to surface currents, pollute the dataset

Grodsky et al, 2011; Rio et al, 2012, Lumpkin et al, 2012

Drifting buoy data processing: Modelling Ekman currents at 15m depth

 β and θ computed over the global ocean by year

Strong dependency of β and θ parameters with time ✓ Increase with time of parameter β ✓ Decrease with time of |θ| Direction of Ekman currents closer to wind direction *Rio et al, 2011* This was due to a failure in the SVP buoy drogue loss detection system:

Undetected undrogued drifter, directly advected by the wind in addition to surface currents, pollute the dataset

Grodsky et al, 2011; Rio et al, 2012, Lumpkin et al, 2012

Drifting buoy dataset: Number of drogued versus undrogued data

Content of the updated SD-DAC SVP drifter dataset

Num buoy velocities Drogue ATTACHED

Num buoy velocities Drogue LOST

Comparison between drifting buoy velocities and altimeter velocities (derived from SLA+First Guess

Drogued SVP buoys Corrected for 15m Ekman currents

MDT) Indrogued SVP buoys Corrected for 15m Ekman currents

Mean zonal differences

Undrogued SVP buoys Corrected for surface Ekman currents

Comparison between drifting buoy velocities and altimeter velocities (derived from SLA+First Guess

Drogued SVP buoys Corrected for 15m Ekman currents MDT) drogued SVP buoys Corrected for 15m Ekman currents

Mean zonal differences

Undrogued SVP buoys Corrected for surface Ekman currents and wind slippage

Comparison between drifting buoy velocities and altimeter velocities (derived from SLA+First Guess MDT)

Drogued SVP buoys Corrected for 15m Ekman currents

-20 -40 -60

Mean zonal differences

Undrogued SVP buoys Corrected for surface Ekman currents and wind slippage

VALIDATION:

COMPARISON TO INDEPENDENT SURFACE VELOCITIES

RMS differences between the ARGO floats surface velocities and altimeter derived velocities (expressed in % of Argo floats velocity variance)

1-Consistency check of using only drogued SVP drifters ('DROG ATTACHED') versus only undrogued SVP drifters ('DROG LOST') versus both drogued+undrogued SVP drifters ('DROGUE ALL')

VALIDATION:

COMPARISON TO INDEPENDENT SURFACE VELOCITIES

RMS differences between the ARGO floats surface velocities and altimeter derived velocities (expressed in % of Argo floats velocity variance)

1-Consistency check of using only drogued SVP drifters ('DROG ATTACHED') versus only undrogued SVP drifters ('DROG LOST') versus both drogued+undrogued SVP drifters ('DROGUE ALL')

	MDT CNES- DROGUE A	-CLS13 LL	MDT DROGUE A	TTACHED	MDT DROGUE LOST				
RMS U	44.6	<	45.2	~	45.0	-			
RMS V	52.4	<	53.4	~	53.2				
MDT differences 1cm RMS									
OSTST, Boulder 2013									

Computation of the MDT first guess

Geostrophic velocity speed from the 100km Gaussian filtered MDT

Geostrophic velocity speed from the Optimally filtered MDT Geostrophic velocity speed from the 200km Gaussian filtered MDT

Computation of the MDT first guess MDT=MSS CNES-CLS11 – EGM-DIR-R4 **OPTIMALLY FILTERED** 80° 60° 40° 20° **0**° 1.0 -20° -40° -60° -80° 50° 100° 150° 200° 250° 300° 350° cm

80

40

120

160

-120

-80

-40

0

OSTST, Boulder 2013

-160