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Introduction
The link between the enhanced rates of sea level change in the Western Tropical 
Pacific and intensified trade winds has received much attention1, but the role of 
wind-forcing in recent near-zero rates along the Northeast Pacific (NEP) coast 
(Figure 1) is not clear.  Sea level variability along the NEP coast is dominated by 
coastally trapped waves of tropical origin south of San Francisco with large-scale, 
longshore winds becoming increasingly important to the north2,3. Another possible 
driver of NEP sea level variability is wind-stress-curl (WSC), which is known to be a 
primary driver of open ocean variability4,5. The relationship between WSC and 
coastal sea level is less clear, however, as there is evidence both for6 and against3 
the role of WSC as a leading-order driver of coastal sea level variability in the NEP 
region.  The purpose of this work is to assess the relative roles of various wind-forcing 
mechanisms in the decline of NEP sea level change rates during recent decades.

Conclusions
1) The recent thickening of the upper layer in the western Pacific is a repsonse to 
intensified trade winds that must be compensated by a thinning of the upper layer 
elsewhere.  This adjustment occurs along the equatorial and coastal waveguides and 
is found via statistical methods to be the leading cause of the recent reduction in the 
rate of NEP coastal sea level change.

2) Long-term predictability of NEP coastal sea level variability is therefore more 
closely tied to tropical winds than extratropical winds.

3) Volume redistribution in the North Pacific due to tropical forcing gives the 
impression that sea level change is decelerating along the NEP coastline11.  
Accounting for regional variability changes the sign of the acceleration to positive with 
values consistent with the acceleration in GMSL over the same period (Table 1).
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Table 1: Acceleration coefficients during the period 1948-2010 from a linear least squares fit to a quadratic 
IRU�DQQXDOO\�DYHUDJHG�1RUWKHDVW�3DFLILF�VHD�OHYHO�DQRPDOLHV��Ѡtg) and anomalies minus estimated regional 
ZLQG�GULYHQ�YDULDELOLW\��Ѡtg ï�Ѡws����$OVR�VKRZQ�DUH�DFFHOHUDWLRQ�FRHIILFLHQWV�GXULQJ�WKH�����ï�����SHULRG�RU�
entire record, whichever is shorter, from Houston & Dean (2011).

Table 3. Acceleration coe!cients during the period 1948-2010 from a linear least squares fit to
a quadratic for annually averaged Northeast Pacific sea level anomalies ( ηtg ) and anomalies minus
estimated regional wind-driven variability ( ηtg − ηws ). Also shown are acceleration coe!cients
during the 1930-2010 period or entire record, whichever is shorter, from Houston and Dean (2011).

SD SF CC SE NB

Houston and Dean (2011) -0.010 -0.022 -0.014 -0.032 -0.038 mm·yr− 2

ηtg -0.023 -0.049 -0.014 -0.026 -0.050 mm·yr− 2

ηtg − ηws 0.043 -0.004 0.018 0.019 0.044 mm·yr− 2
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Figure 3: Detrended San Diego sea level (minus reconstructed global mean sea level) and the result of a 
PXOWLSOH�OLQHDU�UHJUHVVLRQ�RQWR�HTXDWRULDO�ZLQG�VWUHVV��Ѭeq���ORQJVKRUH�ZLQG�VWUHVV��Ѭls), and local wind-stress 
FXUO��Ѭxy).

Data
Annual sea level time series are calculated using monthly mean tide gauge sea levels 
from the Permanent Service for Mean Sea Level (PSMSL, http://www.psmsl.org) 
after removing the mean annual cycle and correcting for the inverted barometer 
effect.  Wind-stress fields (1948-2010) are obtained from the NCEP/NCAR Reanaly-
sis 1 (NCEP1) project.
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Figure 1: Linear rates of sea surface height (SSH) change measured by satellite altimeters and annually 
averaged coastal sea level anomalies from selected North Pacific tide gauges.
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Figure 2:  [ a ] Vector combinations of zonal and meridional regression coefficients for regressions of annual 
DYHUDJH�ZLQG�VWUHVV�RQWR�Ѭeq (arrows) and the magnitude of the vectors (colors). [ b ] Same as [ a ], but with 
increased detail near the tide gauges of interest.  The regression coefficients are unitless, and the colorbar 
in [ b ] applies to both panels.
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Figure 4: Detrended tide gauge sea levels (minus 
reconstructed global mean sea level) along the 
Pacific North American coast (black lines) with the 
sum of the wind-forced contributions (red lines).
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Figure 5: The left panel shows the fraction of vari-
ance accounted for by the equatorial (yellow), long-
shore (blue), wind-stress-curl (gray) and combined 
(red) components in the multiple regression. The 
right panel shows linear rates of change during the 
altimeter period for the measured sea levels (black 
bar) and estimates of each contribution to the rate 
from the individual wind-forced components.
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Figure 6: Twenty year sea level change rates from San Diego (black) and Fremantle (red).

Regressions north of San Diego
The product asdѬeq represents sea level variability at San Diego resulting from 
HTXDWRULDOO\�IRUFHG�DQRPDOLHV��DQG�LQ�RUGHU�WR�FLUFXPYHQW�WKH�FRUUHODWLRQ�EHWZHHQ�Ѭeq 
DQG� Ѭls in regressions at gauges further to the north, we assume this equatorially 
forced variability is constant at all gauges.  This assumption is reasonable as the 
largest amplitude coastally-trapped propagating anomalies are coherent north of the 
Gulf of California.  Little longshore difference in amplitude is found in either 
altimetry7,8 or high-resolution models9,10.  The regression then takes the form

>�Ѡ�ï�DsdѬeq�@� �Ѡ���EѬls ��FѬxy ݑ���

The results of these regressions (Figures 4 & 5) suggest that although local 
longshore winds are an important driver of coastal sea level variability and can 
account for a majority of the variability in annual averaged sea levels, the recent 
suppression of sea level rise along the NEP coastline is of primarily tropical origin 
resulting from adjustment along the wave-guide to anomalous equatorial wind-stress.  
This mechanism is further supported by the the relationship between long-term trends 
at San Diego in the east and Fremantle in the west (Figure 6).

Regression at San Diego
The principal difficulty in statistically separating the relative contributions of various 
wind-forced mechanisms is the correlation between HTXDWRULDO� ZLQG�VWUHVV� �Ѭeq), 
ORQJVKRUH� ZLQG�VWUHVV� �Ѭls��� DQG� ORFDO� ZLQG�VWUHVV� FXUO� �Ѭxy).  This relationship is 
illustrated in Figure 2, which shows regressions of zonal and meridional wind-stress 
RYHU�WKH�3DFLILF�RQWR�Ѭeq. The signature of the Aleutian Low is apparent, such that 
ZHDNHU� WKDQ� QRUPDO� HTXDWRULDO� WUDGHV� �L�H��� (O� 1LxR� FRQGLWLRQV�� FRUUHVSRQG� WR� D�
deepened Aleutian Low and increased longshore wind-stress along the NEP 
coastline. 

The detailed view of the west coast of the United States (Figure 2b) shows that 
ORQJVKRUH�ZLQGV�DW�6DQ�'LHJR�GR�QRW�FRUUHODWH�ZLWK�Ѭeq due to the orientation of the 
FRDVWOLQH�DQG�WKH�F\FORQLF�VWUXFWXUH�RI�WKH�$OHXWLDQ�/RZ���7KH�LQGHSHQGHQFH�RI�Ѭeq 
DQG�Ѭls at San Diego allows for statistical separation in a regression.  There is a small 
FRUUHODWLRQ� EHWZHHQ� Ѭxy DQG� Ѭeq that is removed by subtracting the correlated 
YDULDELOLW\� IURP� Ѭeq. This gives three independent inputs for a multiple linear 
regression (MLR) at San Diego.  The result of the MLR (Figure 3) shows that the 
UHFHQW�WUHQG�LQ�FRDVWDO�VHD�OHYHO�DW�6DQ�'LHJR�LV�PRVWO\�DFFRXQWHG�IRU�E\�Ѭeq.


