Data assimilation in 3D ocean coupled physical-bigeochemical models: state and parameter estimation, using nonlinear extensions of the Kalman filter

<u>Maeva Doron</u>, David Béal, Clément Fontana, Pierre Brasseur and Jean-Michel Brankart

Laboratoire des Ecoulements Géophysiques et Industriels (LEGI-MEOM team), Grenoble, France

Methodology: Development of the anamorphosis

Methodology: Parameter estimation

State estimation with the SEEK filter

Summary - Conclusions - Next steps

Why use 3D ocean coupled physical-biogeochemical models?

- Coupled physical-biogeochemical models deal with the biogeochemical state of the oceans
- Phytoplankton is the link between inorganic and organic matter
 - can grow when there is availability of light and nutrients
 - is the first trophic level in the food chain

Why non-linear and non-Gaussian extensions are needed?

Ensemble simulations with a 3D coupled physical-biogeochemical model

- non-Gaussian behavior
- non-linear dependence between key variables

Hence, linearized methods, like the Kalman filter, are far from optimal

Ocean color satellite observations

- Satellite ocean colour is a unique way of observing biology in the oceans (chlorophyll a)
- ▶ Wealth of observations: global scale, fine resolution, 10-year-archive, but: surface measurements, cloud coverage, poorly known observation error

Context

Strong interest in ocean coupled physical-biogeochemical models

- Tool to quantify fluxes in carbon cycle
- Estimation and forecast of biological state of the ocean by operational oceanography centers

Difficulties in using coupled models

- Very sensitive to the physical forcing
- Biogeochemical laws and parameters are uncertain

Satellite ocean colour sensors provide chlorophyll a concentrations

- Wealth of observations
- But only surface data

Methodology developped to **reduce the uncertainty in the coupled models**, such as the initial condition, the parameterisation or the physical forcing with data assimilation of **ocean colour** data using sequential stochastic methods.

Methodology: Development of the anamorphosis

Methodology: Parameter estimation

State estimation with the SEEK filter

Summary - Conclusions - Next steps

Wind perturbation

Cascade of errors in the coupled model:

Protocol to generate the Gaussian perturbations

- ERA40 wind forcing database (1985-2000)
- Covariance of the wind variability computed for the spring season
- ▶ 50 EOF kept (80% of the variance)
- Wind perturbation randomly sampled with this covariance

Gaussian wind perturbation: distribution of the output?

The coupled physical-biogeochemical model response to the wind perturbation

- ▶ Experiments last 1 month from April 16, 1998
- ▶ 200 ensemble members

Standard Deviation of the ensemble for surface phytoplancton after 1 day

Very inhomogeneous response in phytoplankton

Non-linear response of the model

Outputs from the 200 runs after 1 day for three stations

Non-linear relationship between PHY and MLD

- For the BATS station, the linear approximation could be valid for smaller range of perturbation
- Very different behavior in different regions

How to cope with non-Gaussian distributions?

Example of the nitrate concentration (NO3 in $mmolNm^{-3}$) after 1 day in the Gulf Stream station

- Anamorphosis first introduced by Bertino et al. (2003)
- Here, piecewise linear change, mapping the ensemble percentiles to Gaussian percentiles.

> The anamorphosis is done locally and independently for each variable

Example of observational update at one station

After 1 day, here in Gulf Stream station

Perfect observation of PHY, update of Mixed Layer Depth

- Left: Analysis in the initial space using linear regression line with the original ensemble
- Right: Analysis in the transformed space using linear regression line with the transformed ensemble
- Non-linear relationship between the two variables better taken into account
- Reduction in the dispersion of the analysed values

D. Béal, P. Brasseur, J.-M. Brankart, Y. Ourmières and J. Verron,

Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis, Ocean Science, 2010

Methodology: Development of the anamorphosis

Methodology: Parameter estimation

State estimation with the SEEK filter

Summary - Conclusions - Next steps

The ecological provinces

- Ecological provinces defined by Longhurst (1995, 2007)
- Assumption that three key biogeochemical parameters are independent on each region
- ▶ The rates have positive values: Gamma distribution are tailored such that the average is the reference value, the 5% and 95% percentiles are 0.5 and 2 times the reference value (validated simulation).

Monte Carlo experiment

- Monte Carlo experiment: 200 simulations with perturbed parameters maps from the same identical initial conditions and same forcing
- ▶ The only difference between simulation is the parameter values, imposed the 15th of March 1998 and held constant
- The simulation length is 1 month

Std dev. after 30 days

5% percentile/Median

Large spatial heterogeneity in the model response

Model response in region 18, North Atlantic Subtropical Gyre (36°N 19°W)

- After 30 days, surface values of the 200 simulations are extracted
- Blue is for the reference, red points stand for the 200 members and green is the ensemble average

- ► The false ocean is the reference simulation (Ourmières et al. JMS 2009) in which the parameters are uniform
- The true ocean is an independent simulation (perturbed on the same assumptions than for the Monte Carlo experiment)
- \hat{P}^{f} is approximated by the multivariate EOFs done on the 200-member ensemble
- R : the observation error is chosen very low
- ► The analysis is either done in a classical way (linear) or performed with the anamorphosed variables (nonlinear)

Results of the linear and nonlinear analysis at day 30

Objective norm: into the anamorphosed space

- All RMS are calculated in the anamorphosed space: variables and paremeters roughly between -3 and 3
- Statistics on RMS for 10 different observations from 10 true oceans: mean and STD of the RMS (similar results for the two other parameters)

M. Doron, P. Brasseur and J.-M. Brankart, Stochastic estimation of biogeochemical parameters of a 3D ocean coupled physical-biogeochemical model : twin experiments, in minor revision for Journal of Marine Systems, 2011

Methodology: Development of the anamorphosis

Methodology: Parameter estimation

State estimation with the SEEK filter

Summary - Conclusions - Next steps

Free simulation in the North Atlantic during the spring bloom

> The development of the bloom can be seen in the free simulation

- The SEEK filter (Pham et al. 1998, Brasseur and Verron 2006) was implemented
- Use of the software SESAM (http://www-meom.hmg.inpg.fr/Web/Outils/SESAM/sesam.html)
- ► EOFs for the current season (kept on 2 months), calculated on model outputs from the free run (every 2 days)
- ▶ Observation error taken equal to 30% of the chlorophyll a concentration
- Ocean color data from SeaWiFS-GAC (last reprocessing): with observations averaged every 4 days

Results of the data assimilation process

- Average on the first 15 days of June 1998
- SEEK has a positive impact of the estimation of the bloom :reduction of the very large concentrations at high latitudes

Diagnostic on different regions

 SEEK performs well in oceanic regions and not so well in coastal regions (not shown here)

Impact on other biogeochemical variable : nitrates

SEEK allows to correct for non observed variables such as nitrates, which is beneficial

- Nitrates are poorly sampled in the world ocean
- This data assimilation system could provide better climatologies of an unobserved variable

Methodology: Development of the anamorphosis

Methodology: Parameter estimation

State estimation with the SEEK filter

Summary - Conclusions - Next steps

2nd SARAL/AltiKa Science Workshop - Ahmedabad - March 2011

< Ø ►

- Model response to wind forcing and parameter uncertainty tested with a Monte Carlo method: nonlinear response and non-Gaussian distributions
- Anamorphosis: the implementation of a nonlinear transformation allows to get closer to linearity
- Parameter estimation in a coupled model is possible from P observations (twin experiments) using anamorphosis
- Data assimilation with SEEK and ocean color data provides good results on observed and unobserved variables

- Use of real ocean color data for parameter estimation
- Extension of the state estimation experiment with SEEK on longer timescales and implementation of anamorphosis to consider its impact
- Transfer of the anamorphosis methodology to other fields of application of data assimilation, for instance with altimetry data, in cases where the model show nonlinear or non-Gaussian behavior (J.-M. Brankart et al., in preparation)